Dimitriou, A., Figueroa, D. G., & Zaldivar, B. (2024). Fast likelihood-free reconstruction of gravitational wave backgrounds. J. Cosmol. Astropart. Phys., 09(9), 032–51pp.
Abstract: based) techniques for reconstructing the spectral shape of a gravitational wave background (GWB). We focus on the reconstruction of an arbitrarily shaped signal (approximated by a piecewise power-law in many frequency bins) by the LISA detector, but the method can be easily extended to either template-dependent signals, or to other detectors, as long as a characterisation of the instrumental noise is available. As proof of the technique, we quantify the ability of LISA to reconstruct signals of arbitrary spectral shape (blind reconstruction), considering a diversity of frequency profiles, and including astrophysical backgrounds in some cases. As a teaser of how the method can reconstruct signals characterised by a parameter-dependent template (template reconstruction), we present a dedicated study for power-law signals. While our technique has several advantages with respect to traditional MCMC methods, we validate it with the latter for concrete cases. This work opens the door for both fast and accurate Bayesian parameter estimation of GWBs, with essentially no computational overhead during the inference step. Our set of tools are integrated into the package GWBackFinder, which is publicly available in GitHub.
|
Beltran Jimenez, J., Heisenberg, L., Olmo, G. J., & Rubiera-Garcia, D. (2017). On gravitational waves in Born-Infeld inspired non-singular cosmologies. J. Cosmol. Astropart. Phys., 10(10), 029–23pp.
Abstract: We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
|
Di Bari, P., Ludl, P. O., & Palomares-Ruiz, S. (2016). Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal. J. Cosmol. Astropart. Phys., 11(11), 044–41pp.
Abstract: We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N-DM with mass M-DM, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, Ns with mass M-S, induced by Higgs portal interactions. The same interactions are also responsible for N-DM decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M-DM >> M-S, there is an allowed window on M-DM values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV less than or similar to M-S < M-DM < 10PeV. We discuss the specific properties of this high-energy neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.
|
LISA Cosmology Working Group(Bartolo, N. et al), & Figueroa, D. G. (2022). Probing anisotropies of the Stochastic Gravitational Wave Background with LISA. J. Cosmol. Astropart. Phys., 11, 009–65pp.
Abstract: We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first discuss the main astrophysical and cosmological sources of SGWB which are characterized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis of the prospects of detectability of anisotropic features with LISA for individual multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise angular spectrum taking into account the specific scan strategy of the LISA detector. We analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic SGWB. We find that beta Omega(GW) similar to 2 x 10(-11) is required to observe a dipolar signal with LISA. The detector response to the quadrupole has a factor similar to 10(3) beta relative to that of the dipole. The characterization of the anisotropies, both from a theoretical perspective and from a map-making point of view, allows us to extract information that can be used to understand the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources.
|
Sandner, S., Hernandez, P., Lopez-Pavon, J., & Rius, N. (2023). Predicting the baryon asymmetry with degenerate right-handed neutrinos. J. High Energy Phys., 11(11), 153–37pp.
Abstract: We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.
|