Aguilera-Verdugo, J. J., Driencourt-Mangin, F., Plenter, J., Ramirez-Uribe, S., Rodrigo, G., Sborlini, G. F. R., et al. (2019). Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders. J. High Energy Phys., 12(12), 163–12pp.
Abstract: We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.
|
Dhani, P. K., Rodrigo, G., & Sborlini, G. F. R. (2023). Triple-collinear splittings with massive particles. J. High Energy Phys., 12(12), 188–20pp.
Abstract: We analyze in detail the most singular behaviour of processes involving triple-collinear splittings with massive particles in the quasi-collinear limit, and present compact expressions for the splitting amplitudes and the corresponding splitting kernels at the squared-amplitude level. Our expressions fully agree with well-known triple-collinear splittings in the massless limit, which are used as a guide to achieve the final expressions. These results are important to quantify dominant mass effects in many observables, and constitute an essential ingredient of current high-precision computational frameworks for collider phenomenology.
|
Aguilera-Verdugo, J. D., Driencourt-Mangin, F., Hernandez-Pinto, R. J., Plenter, J., Prisco, R. M., Ramirez-Uribe, N. S., et al. (2021). A Stroll through the Loop-Tree Duality. Symmetry-Basel, 13(6), 1029–37pp.
Abstract: The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.
|
Ramirez-Uribe, S., Hernandez-Pinto, R. J., Rodrigo, G., & Sborlini, G. F. R. (2022). From Five-Loop Scattering Amplitudes to Open Trees with the Loop-Tree Duality. Symmetry-Basel, 14(12), 2571–14pp.
Abstract: Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7MLT universal topology, that allows us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.
|
Actis, S. et al, & Rodrigo, G. (2010). Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data. Eur. Phys. J. C, 66(3-4), 585–686.
Abstract: We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low-energy e (+) e (-) colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on tau decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and tau decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed.
|