|   | 
Details
   web
Records
Author Aguilera-Verdugo, J.D.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Plenter, J.; Prisco, R.M.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tramontano, F.
Title A Stroll through the Loop-Tree Duality Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume (up) 13 Issue 6 Pages 1029 - 37pp
Keywords Feynman integrals; multi-loop calculations; perturbative QFT; higher orders
Abstract The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.
Address [de Jesus Aguilera-Verdugo, Jose; Driencourt-Mangin, Felix; Plenter, Judith; Selomit Ramirez-Uribe, Norma; Ernesto Renteria-Olivo, Andres; Rodrigo, German; Sborlini, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Paterna, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000666742200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4889
Permanent link to this record
 

 
Author Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.
Title From Five-Loop Scattering Amplitudes to Open Trees with the Loop-Tree Duality Type Journal Article
Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume (up) 14 Issue 12 Pages 2571 - 14pp
Keywords perturbative QFT; higher-order calculations; multiloop Feynman integrals
Abstract Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7MLT universal topology, that allows us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.
Address [Ramirez-Uribe, Selomit; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, Consejo Super Invest Cient, Parc Cient, E-46980 Paterna, Spain, Email: roger@uas.edu.mx
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000904374000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5450
Permanent link to this record
 

 
Author Actis, S. et al; Rodrigo, G.
Title Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data Type Journal Article
Year 2010 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 66 Issue 3-4 Pages 585-686
Keywords
Abstract We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low-energy e (+) e (-) colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on tau decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and tau decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed.
Address [Actis, S.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland, Email: henryk.czyz@us.edu.pl
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes ISI:000276479900016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 475
Permanent link to this record
 

 
Author Altheimer, A. et al; Fassi, F.; Gonzalez de la Hoz, S.; Kaci, M.; Oliver Garcia, E.; Rodrigo, G.; Salt, J.; Sanchez Martinez, V.; Villaplana, M.; Vos, M.
Title Boosted objects and jet substructure at the LHC Type Journal Article
Year 2014 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 74 Issue 3 Pages 2792 - 24pp
Keywords
Abstract This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of first-principle QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-of-the-art Monte Carlo tools. Limitations of the experiments' ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. A final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted top quarks.
Address [Altheimer, A.; Thompson, E. N.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000333208300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1736
Permanent link to this record
 

 
Author de Florian, D.; Sborlini, G.F.R.; Rodrigo, G.
Title QED corrections to the Altarelli-Parisi splitting functions Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 76 Issue 5 Pages 282 - 6pp
Keywords
Abstract We discuss the combined effect of QED and QCD corrections to the evolution of parton distributions. We extend the available knowledge of the Altarelli-Parisi splitting functions to one order higher in QED, and we provide explicit expressions for the splitting kernels up to O(alpha alpha(S)). The results presented in this article allow one to perform a parton distribution function analysis reaching full NLO QCD-QED combined precision.
Address [de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, 1428 Pabellon 1 Ciudad Univ, Buenos Aires, Argentina, Email: deflo@unsam.edu.ar;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000376606500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2692
Permanent link to this record