toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yao, D.L.; Fernandez-Soler, P.; Albaladejo, M.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Heavy-to-light scalar form factors from Muskhelishvili-Omnes dispersion relations Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume (up) 78 Issue 4 Pages 310 - 26pp  
  Keywords  
  Abstract By solving the Muskhelishvili-Omnes integral equations, the scalar form factors of the semileptonic heavy meson decays D -> pi(l) over bar nu(l), D -> (K) over bar(l) over bar nu(l), (K) over bar -> pi(l) over bar nu(l) and (B) over bar (s) -> Kl (nu) over bar (l) are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omn\`es matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q(2)=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q(2)=0, we obtain |V-cd| = 0.244 +/- 0.022, |V-cs| = 0.945 +/- 0.041 and |V-ub| = (4.3 +/- 0.7)x10(-3) for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q(2) = 0: |f(+)(D ->eta)(0)| = 0.01 +/- 0.05, |f(+)(Ds ->eta)(0)| = 0.50 +/- 0.08, |f(+)(Ds ->eta)(0)| = 0.73 +/- 0.03 and|f(+)((B) over bar ->eta)(0)| = 0.82 +/- 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q(2)-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.  
  Address [Yao, D. -L.; Fernandez-Soler, P.; Nieves, J.] UV, Inst Invest Paterna, Ctr Mixto, Inst Fis Corpuscular,CSIC, Apartado 22085, Valencia, Spain, Email: deliang.yao@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430575000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3568  
Permanent link to this record
 

 
Author Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. url  doi
openurl 
  Title Contribution of constituent quark model c(s)over-bar states to the dynamics of the D*s0 (2317) and Ds1(2460) resonances Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume (up) 78 Issue 9 Pages 722 - 22pp  
  Keywords  
  Abstract The masses of the D*(s0) (2317) and D-s1(2460) resonances lie below the DK and D* K thresholds respectively, which contradicts the predictions of naive quark models and points out to non-negligible effects of the D(*) K loops in the dynamics of the even-parity scalar (J(pi) = 0(+)) and axial-vector (J(pi) = 1(+)) c (s) over bar systems. Recent lattice QCD studies, incorporating the effects of the D(*) K channels, analyzed these spin-parity sectors and correctly described the D*(s0)(2317) – D-s1(2460) mass splitting. Motivated by such works, we study the structure of the D*(s0)(2317) and D-s1(2460) resonances in the framework of an effective field theory consistent with heavy quark spin symmetry, and that incorporates the interplay between D(*) K meson-meson degrees of freedom and bare P-wave c (s) over bar states predicted by constituent quark models. We extend the scheme to finite volumes and fit the strength of the coupling between both types of degrees of freedom to the available lattice levels, which we successfully describe. We finally estimate the size of the D(*) K two-meson components in the D*(s0)(2317) and D-s1(2460) resonances, and we conclude that these states have a predominantly hadronic-molecular structure, and that it should not be tried to accommodate these mesons within c (s) over bar constituent quark model patterns.  
  Address [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain, Email: albaladejo@um.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443822000003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3714  
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R.; Sakai, S. url  doi
openurl 
  Title Lambda(b) decays into Lambda cl(nu)over-barl and Lambda c*pi(-) [ Lambda(c)* = Lambda(c)( 2595) and Lambda(c)(2625)] and heavy quark spin symmetry Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume (up) 79 Issue 5 Pages 417 - 20pp  
  Keywords  
  Abstract We study the implications for bc=c(2595) and c(2625)] decays that can be deduced from heavy quark spin symmetry (HQSS). Identifying the odd parity c(2595) and c(2625) resonances as HQSS partners, with total angular momentum-parity jqP=1- for the light degrees of freedom, we find that the ratios (bc(2595)-)/(bc(2625)-) and (bc(2595)) agree, within errors, with the experimental values given in the Review of Particle Physics. We discuss how future, and more precise, measurements of the above branching fractions could be used to shed light into the inner HQSS structure of the narrow c(2595) odd-parity resonance. Namely, we show that such studies would constrain the existence of a sizable jqP</mml:msubsup>=0- component in its wave-function, and/or of a two-pole pattern, in analogy to the case of the similar (1405) resonance in the strange sector, as suggested by most of the approaches that describe the c(2595) as a hadron molecule. We also investigate the lepton flavor universality ratios R[c]=B( may be affected by a new source of potentially large systematic errors if there are two) poles.  
  Address [Nieves, J.; Pavao, R.] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: shsakai@itp.ac.cn  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468374700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4021  
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R.; Tolos, L. url  doi
openurl 
  Title Xi(c) and Xi(b) excited states within a SU(6)(lsf) x HQSS model Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume (up) 80 Issue 1 Pages 22 - 12pp  
  Keywords  
  Abstract We study odd parity J = 1/2 and J = 3/2 Xi(c) resonances using a unitarized coupled-channel framework based on a SU(6)(lsf) xHQSS-extended Weinberg-Tomozawa baryon-meson interaction, while paying a special attention to the renormalization procedure. We predict a large molecular Lambda(c)(K) over bar component for the Xi(c) (2790) with a dominant 0(-) light-degree-of-freedom spin configuration. We discuss the differences between the 3/2(-) Lambda(c)(2625) and Xi(c)(2815) states, and conclude that they cannot be SU(3) siblings, whereas we predict the existence of other Xi(c)-states, one of them related to the two-pole structure of the Lambda(c)(2595). It is of particular interest a pair of J = 1/2 and J = 3/2 poles, which form a HQSS doublet and that we tentatively assign to the Xi(c)(2930) and Xi(c)(2970), respectively. Within this picture, the Xi(c)(2930) would be part of a SU(3) sextet, containing either the Omega(c)(3090) or the Omega(c)(3119), and that would be completed by the Sigma(c)(2800). Moreover, we identify a J = 1/2 sextet with the Xi(b)(6227) state and the recently discovered Sigma(b)(6097). Assuming the equal spacing rule and to complete this multiplet, we predict the existence of a J = 1/2 Omega(b) odd parity state, with a mass of 6360 MeV and that should be seen in the Xi(b) (K) over bar channel.  
  Address [Nieves, J.; Pavao, R.] UV, CSIC, Inst Invest Paterna, Inst Fis Corpuscular,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: tolos@ice.csic.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000514590400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4295  
Permanent link to this record
 

 
Author Gamermann, D.; Nieves, J.; Oset, E.; Ruiz Arriola, E. url  doi
openurl 
  Title Couplings in coupled channels versus wave functions: Application to the X(3872) resonance Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 81 Issue 1 Pages 014029 - 14pp  
  Keywords  
  Abstract We perform an analytical study of the scattering matrix and bound states in problems with many physical coupled channels. We establish the relationship of the couplings of the states to the different channels, obtained from the residues of the scattering matrix at the poles, with the wave functions for the different channels. The couplings basically reflect the value of the wave functions around the origin in coordinate space. In the concrete case of the X(3872) resonance, understood as a bound state of D-0(D) over bar*(0) and D+D*(-) (and c.c. From now on, when we refer to D-0(D) over bar*(0), D+D*(-), or D (D) over bar* we are actually referring to the combination of these states with their complex conjugate in order to form a state with positive C-parity), with the D-0(D) over bar*(0) loosely bound, we find that the couplings to the two channels are essentially equal leading to a state of good isospin I = 0 character. This is in spite of having a probability for finding the D-0(D) over bar*(0) state much larger than for D+D*(-) since the loosely bound channel extends further in space. The analytical results, obtained with exact solutions of the Schrodinger equation for the wave functions, can be useful in general to interpret results found numerically in the study of problems with unitary coupled channels methods.  
  Address [Gamermann, D.; Nieves, J.; Oset, E.] Univ Valencia, Ctr Mixto, Inst Fis Corpuscular IFIC, CSIC,Inst Invest Paterna, Valencia 46071, Spain, Email: daniel.gamermann@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284268800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 329  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva