|   | 
Details
   web
Records
Author Staub, F.; Athron, P.; Basso, L.; Goodsell, M.D.; Harries, D.; Krauss, M.E.; Nickel, K.; Opferkuch, T.; Ubaldi, L.; Vicente, A.; Voigt, A.
Title Precision tools and models to narrow in on the 750 GeV diphoton resonance Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 76 Issue 9 Pages 516 - 57pp
Keywords
Abstract The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.
Address [Staub, Florian] CERN, Dept Theoret Phys, Geneva, Switzerland, Email: florian.staub@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000384579900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2826
Permanent link to this record
 

 
Author Celis, A.; Fuentes-Martin, J.; Vicente, A.; Virto, J.
Title DsixTools: the standard model effective field theory toolkit Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 77 Issue 6 Pages 405 - 40pp
Keywords
Abstract We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the Delta B = Delta S = 1, 2 and Delta B = Delta C = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale.
Address [Celis, Alejandro] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Fak Phys, D-80333 Munich, Germany, Email: Alejandro.Celis@physik.uni-muenchen.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000403504500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3181
Permanent link to this record
 

 
Author Fuentes-Martin, J.; Ruiz-Femenia, P.; Vicente, A.; Virto, J.
Title DsixTools 2.0: the effective field theory toolkit Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 81 Issue 2 Pages 167 - 30pp
Keywords
Abstract DsixTools is a Mathematica package for the handling of the standard model effective field theory (SMEFT) and the low-energy effective field theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. DsixTools contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). DsixTools also performs weak basis transformations, and implements the full one-loop Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.
Address [Fuentes-Martin, Javier] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany, Email: jvirto@ub.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000620648200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4735
Permanent link to this record
 

 
Author De Romeri, V.; Puerta, M.; Vicente, A.
Title Dark matter in a charged variant of the Scotogenic model Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 82 Issue 7 Pages 623 - 16pp
Keywords
Abstract Scotogenic models are among the most popular possibilities to link dark matter and neutrino masses. In this work we discuss a variant of the Scotogenic model that includes charged fermions and a doublet with hypercharge 3/2. Neutrino masses are induced at the one-loop level thanks to the states belonging to the dark sector. However, in contrast to the standard Scotogenic model, only the scalar dark matter candidate is viable in this version. After presenting the model and explaining some particularities about neutrino mass generation, we concentrate on its dark matter phenomenology. We show that the observed dark matter relic density can be correctly reproduced in the usual parameter space regions found for the standard Scotogenic model or the Inert Doublet model. In addition, the presence of the charged fermions opens up new viable regions, not present in the original scenarios, provided some tuning of the parameters is allowed.
Address [De Romeri, Valentina; Puerta, Miguel; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000826946000002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5311
Permanent link to this record
 

 
Author Aebischer, J. et al; Vicente, A.
Title Computing tools for effective field theories Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (up) 84 Issue 2 Pages 170 - 59pp
Keywords
Abstract In recent years, theoretical and phenomenological studies with effective field theories have become a trending and prolific line of research in the field of high-energy physics. In order to discuss present and future prospects concerning automated tools in this field, the SMEFT-Tools 2022 workshop was held at the University of Zurich from 14th-16th September 2022. The current document collects and summarizes the content of this workshop.
Address [Aebischer, Jason; Allwicher, Lukas; Stoffer, Peter] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland, Email: matteo.fael@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001189739500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6052
Permanent link to this record