ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bouchhar, N., Cabrera Urban, S., et al. (2024). Fiducial and differential cross-section measurements of electroweak Wγjj production in pp collisions at √s=13 TeV with the ATLAS detector. Eur. Phys. J. C, 84(10), 1064–34pp.
Abstract: The observation of the electroweak production of a W boson and a photon in association with two jets, using pp collision data at the Large Hadron Collider at a centre of mass energy of root s =13 TeV, is reported. The data were recorded by the ATLAS experiment from 2015 to 2018 and correspond to an integrated luminosity of 140 fb(-1). This process is sensitive to the quartic gauge boson couplings via the vector boson scattering mechanism and provides a stringent test of the electroweak sector of the Standard Model. Events are selected if they contain one electron or muon, missing transverse momentum, at least one photon, and two jets. Multivariate techniques are used to distinguish the electroweak W gamma jj process from irreducible background processes. The observed significance of the electroweak W gamma jj process is well above six standard deviations, compared to an expected significance of 6.3 standard deviations. Fiducial and differential cross sections are measured in a fiducial phase space close to the detector acceptance, which are in reasonable agreement with leading order Standard Model predictions from MadGraph5+Pythia8 and Sherpa. The results are used to constrain new physics effects in the context of an effective field theory.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2024). Measurement of the W-boson mass and width with the ATLAS detector using proton-proton collisions at √s=7 TeV. Eur. Phys. J. C, 84(12), 1309–36pp.
Abstract: Proton-proton collision data recorded by the ATLAS detector in 2011, at a centre-of-mass energy of 7 TeV, have been used for an improved determination of the W-boson mass and a first measurement of the W-boson width at the LHC. Recent fits to the proton parton distribution functions are incorporated in the measurement procedure and an improved statistical method is used to increase the measurement precision. The measurement of the W-boson mass yields a value of m(W) = 80,366.5 +/- 9.8 (stat.) +/- 12.5 (syst.) MeV = 80,366.5 +/- 15.9 MeV, and the width is measured as Gamma(W) = 2202 +/- 32 (stat.) +/- 34 (syst.) MeV = 2202 +/- 47 MeV. The first uncertainty components are statistical and the second correspond to the experimental and physics-modelling systematic uncertainties. Both results are consistent with the expectation from fits to electroweak precision data. The present measurement of mW is compatible with and supersedes the previous measurement performed using the same data.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Measurement of the associated production of a top-antitop-quark pair and a Higgs boson decaying into a b(b)over-bar pair in pp collisions at √s=13 TeV using the ATLAS detector at the LHC. Eur. Phys. J. C, 85(2), 210–40pp.
Abstract: This paper reports the measurement of Higgs boson production in association with a t (t) over bar pair in the H -> b (b) over bar decay channel. The analysis uses 140 fb(-1) of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The final states with one or two electrons or muons are employed. An excess of events over the expected background is found with an observed (expected) significance of 4.6 (5.4) standard deviations. The t (t) over barH cross-section is sigma(t (t) over barH)=411(-92)(+101)fb=411 +/- 54(stat.)(-75)(+85)(syst.)fb for a Higgs boson mass of 125.09 GeV, consistent with the prediction of the Standard Model of 507(-50)(+35) fb. The cross-section is also measured differentially in bins of the Higgs boson transverse momentum within the simplified template cross-section framework.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Search for a light charged Higgs boson in t → H±b decays, with H± → cs, in pp collisions at √s=13 TeV with the ATLAS detector. Eur. Phys. J. C, 85(2), 153–34pp.
Abstract: A search for a light charged Higgs boson produced in decays of the top quark, t -> H(+/-)b with H-+/- -> cs, is presented. This search targets the production of top-quark pairs t (t) over bar. WbH(+/-)b, with W -> lv (l = e, mu), resulting in a lepton-plus-jets final state characterised by an isolated electron or muon and at least four jets. The search exploits b-quark and c-quark identification techniques as well as multivariate methods to suppress the dominant t (t) over bar background. The data analysed correspond to 140 fb(-1) of pp collisions at root s = 13 TeV recorded with the ATLAS detector at the LHC between 2015 and 2018. Observed (expected) 95% confidence-level upper limits on the branching fraction B(t -> H(+/-)b), assuming B(t -> Wb) + B(t -> H +/-(-> cs)b) = 1.0, are set between 0.066% (0.077%) and 3.6% (2.3%) for a charged Higgs boson with a mass between 60 and 168 GeV.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Measurement of the Lund jet plane in hadronic decays of top quarks and W bosons with the ATLAS detector. Eur. Phys. J. C, 85(4), 416–41pp.
Abstract: The Lund jet plane (LJP) is measured for the first time in t (t) over bar events, using 140 fb(-1) of root s = 13 TeV pp collision data collected with the ATLAS detector at the LHC. The LJP is a two-dimensional observable of the sub-structure of hadronic jets that acts as a proxy for the kinematics of parton showers and hadron formation. The observable is constructed from charged particles and is measured for R = 1.0 anti-k(t) jets with transverse momentum above 350 GeV containing the full decay products of either a top quark or a daughter W boson. The other top quark in the event is identified from its decay into a b-quark, an electron or a muon and a neutrino. The measurement is corrected for detector effects and compared with a range of Monte Carlo predictions sensitive to different aspects of the hadronic decays of the heavy particles. In the W-boson-initiated jets, all the predictions are incompatible with the measurement. In the top quark initiated jets, disagreement with all predictions is observed in smaller subregions of the plane, and with a subset of the predictions across the fiducial plane. The measurement could be used to improve the tuning of Monte Carlo generators, for better modelling of hadronic decays of heavy quarks and bosons, or to improve the performance of jet taggers.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Measurement of off-shell Higgs boson production in the H*→ZZ→4l decay channel using a neural simulation-based inference technique in 13 TeV pp collisions with the ATLAS detector. Rep. Prog. Phys., 88(5), 057803–38pp.
Abstract: A measurement of off-shell Higgs boson production in the H*-> ZZ -> 4l decay channel is presented. The measurement uses 140 fb-1 of proton-proton collisions at s=13 TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the ZZ -> 4l decay channel at 68% CL is 0.87-0.54+0.75 ( 1.00-0.95+1.04). The evidence for off-shell Higgs boson production using the ZZ -> 4l decay channel has an observed (expected) significance of 2.5 sigma (1.3 sigma). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of 0.5 sigma. When combined with the most recent ATLAS measurement in the ZZ -> 2l2 nu decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7 sigma (2.4 sigma). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is 4.3-1.9+2.7 ( 4.1-3.4+3.5) MeV.
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., Castillo, F. L., et al. (2021). Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector. Phys. Rev. D, 104(11), 112010–42pp.
Abstract: A search for charginos and neutralinos at the Large Hadron Collider using fully hadronic final states and missing transverse momentum is reported. Pair-produced charginos or neutralinos are explored, each decaying into a high-pT Standard Model weak boson. Fully hadronic final states are studied to exploit the advantage of the large branching ratio, and the efficient rejection of backgrounds by identifying the high-pT bosons using large-radius jets and jet substructure information. An integrated luminosity of 139 fb(-1) of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used. No significant excess is found beyond the Standard Model expectation. Exclusion limits at the 95% confidence level are set on wino or higgsino production with various assumptions about the decay branching ratios and the type of lightest supersymmetric particle. A wino (higgsino) mass up to 1060 (900) GeV is excluded when the lightest supersymmetry particle mass is below 400 (240) GeV and the mass splitting is larger than 400 (450) GeV. The sensitivity to high-mass winos and higgsinos is significantly extended relative to previous LHC searches using other final states.
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., Castillo Gimenez, V., et al. (2021). Search for new phenomena in pp collisions in final states with tau leptons, b-jets, and missing transverse momentum with the ATLAS detector. Phys. Rev. D, 104(11), 112005–35pp.
Abstract: A search for new phenomena in final states with hadronically decaying tau leptons, b-jets, and missing transverse momentum is presented. The analyzed dataset comprises pp collision data at a center-of-mass energy of root s = 13 TeV with an integrated luminosity of 139 fb(-1), delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a b-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang-Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., Castillo Gimenez, V., et al. (2022). Search for Higgs boson decays into a pair of pseudoscalar particles in the bb μμfinal state with the ATLAS detector in pp collisions at root s=13 TeV. Phys. Rev. D, 105(1), 012006–29pp.
Abstract: This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, H -> aa, where one a-boson decays into a b-quark pair and the other into a muon pair. The search uses 139 fb(-1) of proton-proton collision data at a center-of-mass energy root s = 13 TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of 3.3 sigma (1.7 sigma). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the bb μμfinal state, beta(H -> aa -> bb μmu), and are in the range 0.2-4.0 x 10(-4), depending on the signal mass hypothesis.
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., Castillo Gimenez, V., et al. (2022). Search for heavy particles in the b-tagged dijet mass distribution with additional b-tagged jets in proton-proton collisions at p root s=13 TeV with the ATLAS experiment. Phys. Rev. D, 105(1), 012001–22pp.
Abstract: A search optimized for new heavy particles decaying to two b-quarks and produced in association with additional b-quarks is reported. The sensitivity is improved by b-tagging at least one lower-pT jet in addition to the two highest-pT jets. The data used in this search correspond to an integrated luminosity of 103 fb-1 collected with a dedicated trijet trigger during the 2017 and 2018 pffisffi = 13 TeV proton-proton collision runs with the ATLAS detector at the LHC. The search looks for resonant peaks in the b-tagged dijet invariant mass spectrum over a smoothly falling background. The background is estimated with an innovative data-driven method based on orthonormal functions. The observed b-tagged dijet invariant mass spectrum is compatible with the background-only hypothesis. Upper limits at 95% confidence level on a heavy vector-boson production cross section times branching ratio to a pair of b-quarks are derived.
|