Zhou, B., Sun, Z. F., Liu, X., & Zhu, S. L. (2017). Chiral corrections to the 1(-+) exotic meson mass. Chin. Phys. C, 41(4), 043101–12pp.
Abstract: We first construct the effective chiral Lagrangians for the 1(-+) exotic mesons. With the infrared regularization scheme, we derive the one-loop infrared singular chiral corrections to the pi(1) (1600) mass explicitly. We investigate the variation of the different chiral corrections with the pion mass under two schemes. Hopefully, the explicit non-analytical chiral structures will be helpful for the chiral extrapolation of lattice data from the dynamical lattice QCD simulation of either the exotic light hybrid meson or the tetraquark state.
|
Ayala, C., Gonzalez, P., & Vento, V. (2016). Heavy quark potential from QCD-related effective coupling. J. Phys. G, 43(12), 125002–12pp.
Abstract: We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.
|
Ayala, C., Cvetic, G., & Kogerler, R. (2017). Lattice-motivated holomorphic nearly perturbative QCD. J. Phys. G, 44(7), 075001–30pp.
Abstract: Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite non-zero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual (MS) over bar running coupling.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of Xi(++)(cc) production in pp collisions at root s=13 TeV. Chin. Phys. C, 44(2), 022001–11pp.
Abstract: The production of Xi(++)(cc) baryons in proton-proton collisions at a centre-of-mass energy of root s = 13 Tev is measured in the transverse-momentum range 4 < p(T) < 15 GeV/c and the rapidity range 2.0 < y < 4.5. The data used in this measurement correspond to an integrated luminosity of 1.7 fb(-1), recorded by the LHCb experiment during 2016. The ratio of the Xi(++)(cc) production cross-section times the branching fraction of the Xi(++)(cc) -> Lambda K-+(c)-pi(+)pi(+) decay relative to the prompt Lambda(+)(c) production cross-section is found to be (2.22 +/- 0.27 +/- 0.29) x 10(-4), assuming the central value of the measured Xi(++)(cc) lifetime, where the first uncertainty is statistical and the second systematic.
|
Papavassiliou, J. (2022). Emergence of mass in the gauge sector of QCD. Chin. Phys. C, 46(11), 112001–23pp.
Abstract: It is currently widely accepted that gluons, while massless at the level of the fundamental QCD Lagrangian, acquire an effective mass through the non-Abelian implementation of the classic Schwinger mechanism. The key dynamical ingredient that triggers the onset of this mechanism is the formation of composite massless poles inside the fundamental vertices of the theory. These poles enter the evolution equation of the gluon propagator and nontrivially affect the way the Slavnov-Taylor identities of the vertices are resolved, inducing a smoking-gun displacement in the corresponding Ward identities. In this article, we present a comprehensive review of the pivotal concepts associated with this dynamical scenario, emphasizing the synergy between functional methods and lattice simulations and highlighting recent advances that corroborate the action of the Schwinger mechanism in QCD.
|