|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Carretero, V.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 03 Issue 3 Pages 092 - 17pp
Keywords neutrino astronomy; ultra high energy photons and neutrinos; particle acceleration; gamma ray bursts theory
Abstract The first gamma-ray burst detections by Imaging Atmospheric Cherenkov Telescopes have been recently announced: GRB 190114C, detected by MAGIC, GRB 180720B and GRB 190829A, observed by H.E.S.S. A dedicated search for neutrinos in space and time coincidence with the gamma-ray emission observed by IACTs has been performed using ANTARES data. The search covers both the prompt and afterglow phases, yielding no neutrinos in coincidence with the three GRBs studied. Upper limits on the energetics of the neutrino emission are inferred. The resulting upper limits are several orders of magnitude above the observed gamma-ray emission, and they do not allow to constrain the available models.
Address [Albert, A.; Drouhin, D.; Huanga, F.; James, C. W.; de Jong, M.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000636717400087 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4781
Permanent link to this record
 

 
Author Barenboim, G.; Chen, J.Z.; Hannestad, S.; Oldengott, I.M.; Tram, T.; Wong, Y.Y.Y.
Title Invisible neutrino decay in precision cosmology Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 03 Issue 3 Pages 087 - 53pp
Keywords cosmological neutrinos; neutrino properties; CMBR theory; cosmological parameters from CMBR
Abstract We revisit the topic of invisible neutrino decay in the precision cosmological context, via a first-principles approach to understanding the cosmic microwave background and large-scale structure phenomenology of such a non-standard physics scenario. Assuming an effective Lagrangian in which a heavier standard-model neutrino nu(H) couples to a lighter one nu(l) and a massless scalar particle phi via a Yukawa interaction, we derive from first principles the complete set of Boltzmann equations, at both the spatially homogeneous and the firstorder inhomogeneous levels, for the phase space densities of nu(H), nu(l), and phi in the presence of the relevant decay and inverse decay processes. With this set of equations in hand, we perform a critical survey of recent works on cosmological invisible neutrino decay in both limits of decay while nu(H) is ultra-relativistic and non-relativistic. Our two main findings are: (i) in the non-relativistic limit, the effective equations of motion used to describe perturbations in the neutrino-scalar system in the existing literature formally violate momentum conservation and gauge invariance, and (ii) in the ultra-relativistic limit, exponential damping of the anisotropic stress does not occur at the commonly-used rate Gamma(T) = (1/tau(0))( m(nu H)/E-nu H)(3), but at a rate similar to (1/ tau(0))(m(nu H)/E-nu H)(5). Both results are model-independent. The impact of the former finding on the cosmology of invisible neutrino decay is likely small. The latter, however, implies a significant revision of the cosmological limit on the neutrino lifetime tau(0) from tau(old)(0) greater than or similar to 1.2 x 10(9) s (m(nu H)/50 meV)(3) to tau(0) greater than or similar to (4 x 10(5) -> 4 x 10(6)) s (m(nu H)/50 meV)(5).
Address [Barenboim, Gabriela; Oldengott, Isabel M.] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000636717400082 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4782
Permanent link to this record
 

 
Author Mosbech, M.R.; Boehm, C.; Hannestad, S.; Mena, O.; Stadler, J.; Wong, Y.Y.Y.
Title The full Boltzmann hierarchy for dark matter-massive neutrino interactions Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 03 Issue 3 Pages 066 - 31pp
Keywords cosmological perturbation theory; dark matter theory; neutrino properties; particle physics – cosmology connection
Abstract The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via u(chi) = sigma(0)/sigma(Th) (m(chi)/100GeV)(-1), is u(chi) <= 3.34 . 10(-4), arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly higher than previous results for interacting massless neutrinos, due to the correction factor associated with neutrino masses. We find that these interactions significantly relax the lower bounds on the value of sigma 8 that is inferred in the context of Lambda CDM from the Planck data, leading to agreement within 1-2 sigma with weak lensing estimates of sigma 8, as those from KiDS1000. However, the presence of these interactions barely affects the value of the Hubble constant H-0.
Address [Mosbech, Markus R.; Boehm, Celine] Univ Sydney, Sch Phys, Camperdown, NSW 2006, Australia, Email: mmos6302@uni.sydney.edu.au;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000636717400061 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4783
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Search for Higgs boson production in association with a high-energy photon via vector-boson fusion with decay into bottom quark pairs at root s=13 TeV with the ATLAS detector Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 268 - 37pp
Keywords Hadron-Hadron scattering (experiments); Higgs physics
Abstract A search is presented for the production of the Standard Model Higgs boson in association with a high-energy photon. With a focus on the vector-boson fusion process and the dominant Higgs boson decay into b-quark pairs, the search benefits from a large reduction of multijet background compared to more inclusive searches. Results are reported from the analysis of 132 fb(-1) of pp collision data at root s = 13 TeV collected with the ATLAS detector at the LHC. The measured Higgs boson signal yield in this final-state signature is 1.3 +/- 1.0 times the Standard Model prediction. The observed significance of the Higgs boson signal above the background is 1.3 standard deviations, compared to an expected significance of 1.0 standard deviations.
Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000638157200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4790
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K.
Title Axionlike particles searches in reactor experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 294 - 38pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Reactor neutrino experiments provide a rich environment for the study of axionlike particles (ALPs). Using the intense photon flux produced in the nuclear reactor core, these experiments have the potential to probe ALPs with masses below 10MeV. We explore the feasibility of these searches by considering ALPs produced through Primakoff and Compton-like processes as well as nuclear transitions. These particles can subsequently interact with the material of a nearby detector via inverse Primakoff and inverse Compton-like scatterings, via axio-electric absorption, or they can decay into photon or electron-positron pairs. We demonstrate that reactor-based neutrino experiments have a high potential to test ALP-photon couplings and masses, currently probed only by cosmological and astrophysical observations, thus providing complementary laboratory-based searches. We furthermore show how reactor facilities will be able to test previously unexplored regions in the similar to MeV ALP mass range and ALP-electron couplings of the order of gaee similar to 10(-8) as well as ALP-nucleon couplings of the order of g (1) ann similar to 10(-9), testing regions beyond TEXONO and Borexino limits.
Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espa 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000636459500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4793
Permanent link to this record