|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Search for magnetic monopoles with ten years of the ANTARES neutrino telescope Type Journal Article
Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume (up) 34 Issue Pages 1-8
Keywords ANTARES telescope; Magnetic monopoles; Neutrino
Abstract This work presents a new search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). Compared to previous ANTARES searches, this analysis uses a run-by-run simulation strategy, with a larger exposure as well as a new simulation of magnetic monopoles taking into account the Kasama, Yang and Goldhaber model for their interaction cross-section with matter. No signal compatible with the passage of relativistic magnetic monopoles is observed, and upper limits on the flux of magnetic monopoles with beta = v/c & nbsp;>=& nbsp;0.55, are presented. For ultra-relativistic magnetic monopoles the flux limit is similar to 7 x 10(-18) cm(-2) s(-1) sr(-1). (C)& nbsp;2022 Elsevier B.V. All rights reserved.
Address [Albert, A.; Pradier, T.] Univ Strasbourg, CNRS, UMR 7178, F-67000 Strasbourg, France, Email: boumaaza.jihad@gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:000791701000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5223
Permanent link to this record
 

 
Author Abdalla, E. et al; Mena, O.
Title Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies Type Journal Article
Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume (up) 34 Issue Pages 49-211
Keywords
Abstract The standard Lambda Cold Dark Matter (Lambda CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H-0, the sigma(8)-S-8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 sigma tension between the Planck CMB estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Omega(m), and the amplitude or rate of the growth of structure (sigma(8), f sigma(8)). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H-0-S-8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions.
Address [Abdalla, Elcio] Univ Sao Paulo, Inst Fis, CP 66318, BR-0531597 Sao Paulo, Brazil, Email: e.divalentino@sheffield.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:000807122400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5465
Permanent link to this record
 

 
Author Navarro, P.; Gimeno, B.; Alvarez Melcon, A.; Arguedas Cuendis, S.; Cogollos, C.; Diaz-Morcillo, A.; Gallego, J.D.; Garcia Barcelo, J.M.; Golm, J.; Irastorza, I.G.; Lozano Guerrero, A.J.; Garay, C.P.
Title Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators Type Journal Article
Year 2022 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume (up) 36 Issue Pages 101001 - 14pp
Keywords Axion detection; Axion field; Axion-photon interaction; BI-RME 3D; Broad-band analysis; Dark matter; Full wave analysis; Haloscope; Microwave resonator; Modal technique
Abstract The electromagnetic coupling axion-photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion-photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green's functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy-Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.
Address [Navarro, P.; Melcon, A. alvarez; Diaz-Morcillo, A.; Barcelo, J. M. Garcia; Guerrero, A. J. Lozano] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: pablonm.ct.94@gmail.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000791333100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5218
Permanent link to this record
 

 
Author Ackermann, M. et al; Garcia Soto, A.
Title High-energy and ultra-high-energy neutrinos: A Snowmass white paper Type Journal Article
Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume (up) 36 Issue Pages 55-110
Keywords
Abstract Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultrahigh-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years.
Address [Ackermann, Markus] DESY, D-15738 Zeuthen, Germany, Email: markus.ackermann@desy.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:000890744900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5434
Permanent link to this record
 

 
Author Gola, S.; Mandal, S.; Sinha, N.
Title ALP-portal majorana dark matter Type Journal Article
Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume (up) 37 Issue Pages 2250131 - 14pp
Keywords Axion like particle; heavy neutrinos; dark matter
Abstract Axion like particles (ALPs) and right-handed neutrinos (RHNs) are two well-motivated dark matter (DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM (Majorana DM) taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and Standard Model (SM) particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.
Address [Gola, Shivam; Sinha, Nita] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India, Email: shivamg@imsc.res.in;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000854297000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5359
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title Resolving an ambiguity of Higgs couplings in the FSM, greatly improving thereby the model's predictive range and prospects Type Journal Article
Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume (up) 37 Issue 27 Pages 2250167 - 10pp
Keywords Framed standard model; Higgs decays; Yukawa couplings
Abstract We show that, after resolving what was thought to be an ambiguity in the Higgs coupling, the FSM gives, apart from two extra terms (i) and (ii) to be specified below, an effective action in the standard sector which has the same form as the SM action, the two differing only in the values of the mass and mixing parameters of quarks and leptons which the SM takes as Finputs from experiment while the FSM obtains as a result of a fit with a few parameters. Hence, to the accuracy that these two sets of parameters agree in value, and they do to a good extent as shown in earlier work,' the FSM should give the same result as the SM in all the circumstances where the latter has been successfully applied, except for the noted modifications due to (i) and (ii). If so, it would be a big step forward for the FSM. The correction terms are: (i) a mixing between the SM's gamma – Z with a new vector boson in the hidden sector, (ii) a mixing between the standard Higgs with a new scalar boson also in the hidden sector. And these have been shown a few years back to lead to (i') an enhancement of the W mass over the SM value,(2) – and (ii') effects consistent with the g – 2 and some other anomalies,(3) precisely the two deviations from the SM reported by experiments(4,5) recently much in the news.
Address [Bordes, Jose] Univ Valencia, CSIC, Dept Fis Teor, Ctr Mixto, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000884996800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5414
Permanent link to this record
 

 
Author Fernandez-Silvestre, D.; Foo, J.; Good, M.R.R.
Title On the duality of Schwarzschild-de Sitter spacetime and moving mirror Type Journal Article
Year 2022 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume (up) 39 Issue 5 Pages 055006 - 18pp
Keywords QFT in curved spacetime; black holes; cosmological horizons; moving mirrors
Abstract The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.
Address [Fernandez-Silvestre, Diego] Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, Burjassot 46100, Spain, Email: diefer2@alumni.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000754064600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5130
Permanent link to this record
 

 
Author Capra, S. et al; Gadea, A.
Title GALTRACE: A highly segmented silicon detector array for charged particle spectroscopy and discrimination Type Journal Article
Year 2022 Publication Nuovo Cimento C Abbreviated Journal Nuovo Cim. C
Volume (up) 45 Issue 5 Pages 98 - 4pp
Keywords
Abstract GALTRACE is an array of segmented silicon detectors specifically built to work as an ancillary of the GALILEO gamma-ray spectrometer at Legnaro National Laboratory of INFN. GALTRACE consists of four telescopic Delta E-Edetectors which allow discriminating light charged particles also via pulse-shape analysis techniques. The good angular and energy resolutions, together with particle discrimination capabilities, make GALTRACE suitable for experiments where coincidences with specific emitted particles allow for the selection of reaction channels with very low cross section. The first in-beam experiment is reported here, aiming at identifying a narrow resonance, near-proton-threshold state in B-11, currently under discussion.
Address [Capra, S.; Ziliani, S.; LEONI, S.; PULLIA, A.; BOTTONI, S.; CAMERA, F.; CRESPI, F. C. L.; GAMBA, E.; MILLION, B.; POLETTINI, M.] Univ Milan, Milan, Italy
Corporate Author Thesis
Publisher Soc Italiana Fisica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2037-4909 ISBN Medium
Area Expedition Conference
Notes WOS:000819587500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5282
Permanent link to this record
 

 
Author HISPEC-DESPEC Collaboration (Polettini, M. et al); Algora, A.; Morales, A.I.; Orrigo, S.E.A.
Title Decay studies in the A similar to 225 Po-Fr region from the DESPEC campaign at GSI in 2021 Type Journal Article
Year 2022 Publication Nuovo Cimento C Abbreviated Journal Nuovo Cim. C
Volume (up) 45 Issue 5 Pages 125 - 4pp
Keywords
Abstract The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region.
Address [Polettini, M.; Benzoni, G.; Genna, D.; Bracco, A.; Bottoni, S.; Camera, F.; Crespi, F. C. L.; Gamba, E. R.; Leoni, S.; Million, B.; Porzio, C.; Wieland, O.; Ziliani, S.] Univ Milan, Dipartimento Fis, Milan, Italy
Corporate Author Thesis
Publisher Soc Italiana Fisica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2037-4909 ISBN Medium
Area Expedition Conference
Notes WOS:000819174100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5292
Permanent link to this record
 

 
Author Li, J.T.; Lin, J.X.; Zhang, G.J.; Liang, W.H.; Oset, E.
Title The (B)over-bar(s)(0) -> J/psi pi(0)eta decay and the a(0)(980)- f(0)(980) mixing Type Journal Article
Year 2022 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume (up) 46 Issue 8 Pages 083108 - 6pp
Keywords strange B meson decay; isospin violation; a(0)(980)-f(0)(980) mixing; hadronic structure
Abstract We study the (B) over bar (0)(s) -> J/psi f(0)(980) and (B) over bar (0)(s) -> J/psi a(0)(980) reactions, and pay attention to the different sources of isospin violation and mixing of f(0)(980) and a(0)(980) resonances where these resonances are dynamically generated from meson-meson interactions. We fmd that the main cause of isospin violation is isospin breaking in the meson-meson transition T matrices, and the other source is that the loops involving kaons in the production mechanism do not cancel due to the different masses of charged and neutral kaons. We obtain a branching ratio for a(0)(980) production of the order of 5 x 10(-6) . Future experiments can address this problem, and the production rate and shape of the pi(0)eta mass distribution will definitely help to better understand the nature of scalar resonances.
Address [Li, Jia-Ting; Lin, Jia-Xin; Zhang, Gong-Jie; Liang, Wei-Hong; Oset, E.] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000829561600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5306
Permanent link to this record