toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gomez-Cadenas, J.J.; Guinea, F.; Fogler, M.M.; Katsnelson, M.I.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J. url  doi
openurl 
  Title GraXe, graphene and xenon for neutrinoless double beta decay searches Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 02 Issue 2 Pages 037 - 17pp  
  Keywords neutrino experiments; double beta decay  
  Abstract We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, grapheme. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the Xe-136 isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope Xe-136 is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.  
  Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Monrabal, F.; Munoz Vidal, J.] CSIC, Inst Fis Corpuscular, IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301176000038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 987  
Permanent link to this record
 

 
Author Arbelaez, C.; Hirsch, M.; Reichert, L. url  doi
openurl 
  Title Supersymmetric mass spectra and the seesaw type-I scale Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 02 Issue 2 Pages 112  
  Keywords  
  Abstract We calculate supersymmetric mass spectra with cMSSM boundary conditions and a type-I seesaw mechanism added to explain current neutrino data. Using published, estimated errors on SUSY mass observables for a combined LHC+ILC analysis, we perform a theoretical chi(2) analysis to identify parameter regions where pure cMSSM and cMSSM plus seesaw type-I might be distinguishable with LHC+ILC data. The most important observables are determined to be the (left) smuon and selectron masses and the splitting between them, respectively. Splitting in the (left) smuon and selectrons is tiny in most of cMSSM parameter space, but can be quite sizeable for large values of the seesaw scale, m S S. Thus, for very roughly m(SS) >= 10(14) GeV hints for type-I seesaw might appear in SUSY mass measurements. Since our numerical results depend sensitively on forecasted error bars, we discuss in some detail the accuracies, which need to be achieved, before a realistic analysis searching for signs of type-I seesaw in SUSY spectra can be carried out.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301453400032 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1026  
Permanent link to this record
 

 
Author Hirsch, M.; Malinsky, M.; Porod, W.; Reichert, L.; Staub, F. url  doi
openurl 
  Title Hefty MSSM-like light Higgs in extended gauge models Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 02 Issue 2 Pages 084  
  Keywords  
  Abstract It is well known that in the MSSM the lightest neutral Higgs h(0) must be, at the tree level, lighter than the Z boson and that the loop corrections shift this stringent upper bound up to about 130GeV. Extending the MSSM gauge group in a suitable way, the new Higgs sector dynamics can push the tree-level mass of h(0) well above the tree-level MSSM limit if it couples to the new gauge sector. This effect is further pronounced at the loop level and h(0) masses in the 140GeV ballpark can be reached easily. We exemplify this for a sample setting with a low-scale U(1)(R) x U(1)(B-L) gauge symmetry in which neutrino masses can be implemented via the inverse seesaw mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301453400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1027  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 02 Issue 2 Pages 026 - 20pp  
  Keywords ultra high energy cosmic rays; cosmic ray experiments  
  Abstract To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.  
  Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Santo, C. E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315576400026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1360  
Permanent link to this record
 

 
Author Cline, J.M.; Vincent, A.C. url  doi
openurl 
  Title Cosmological origin of anomalous radio background Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 02 Issue 2 Pages 011 - 23pp  
  Keywords cosmology of theories beyond the SM; dark matter theory; extragalactic magnetic fields  
  Abstract The ARCADE 2 collaboration has reported a significant excess in the isotropic radio background, whose homogeneity cannot be reconciled with clustered sources. This suggests a cosmological origin prior to structure formation. We investigate several potential mechanisms and show that injection of relativistic electrons through late decays of a metastable particle can give rise to the observed excess radio spectrum through synchrotron emission. However, constraints from the cosmic microwave background (CMB) anisotropy, on injection of charged particles and on the primordial magnetic field, present a challenge. The simplest scenario is with a greater than or similar to 9 GeV particle decaying into e(+)e(-) at a redshift of z similar to 5, in a magnetic field of similar to 5 μG, which exceeds the CMB B-field constraints, unless the field was generated after decoupling. Decays into exotic millicharged particles can alleviate this tension, if they emit synchroton radiation in conjunction with a sufficiently large background magnetic field of a dark U(1)' gauge field.  
  Address [Cline, James M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada, Email: jcline@physics.mcgill.ca;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315576400011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1361  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva