|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Search for non-standard neutrino interactions with 10 years of ANTARES data Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 07 Issue 7 Pages 048 - 22pp
Keywords Neutrino Detectors and Telescopes (experiments)
Abstract Non-standard interactions of neutrinos arising in many theories beyond the Standard Model can significantly alter matter effects in atmospheric neutrino propagation through the Earth. In this paper, a search for deviations from the prediction of the standard 3-flavour atmospheric neutrino oscillations using the data taken by the ANTARES neutrino telescope is presented. Ten years of atmospheric neutrino data collected from 2007 to 2016, with reconstructed energies in the range from similar to 16 GeV to 100 GeV, have been analysed. A log-likelihood ratio test of the dimensionless coefficients epsilon(mu tau) and epsilon(tau tau) – epsilon(mu mu) does not provide clear evidence of deviations from standard interactions. For normal neutrino mass ordering, the combined fit of both coefficients yields a value 1.7 sigma away from the null result. However, the 68% and 95% confidence level intervals for epsilon(mu tau) and epsilon(tau tau) – epsilon(mu mu), respectively, contain the null value. Best fit values, one standard deviation errors and bounds at the 90% confidence level for these coefficients are given for both normal and inverted mass orderings. The constraint on epsilon(mu tau) is among the most stringent to date and it further restrains the strength of possible non-standard interactions in the μ- tau sector.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: juanjo@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000822485300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5285
Permanent link to this record
 

 
Author Hernandez-Rey, J.J.; Ardid, M.; Bou Cabo, M.; Calvo, D.; Diaz, A.F.; Gozzini, S.R.; Martinez-Mora, J.A.; Navas, S.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Science with Neutrino Telescopes in Spain Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume (up) 8 Issue 2 Pages 89 - 25pp
Keywords neutrino; neutrino telescopes; neutrino astrophysics; neutrino properties; sea science
Abstract The primary scientific goal of neutrino telescopes is the detection and study of cosmic neutrino signals. However, the range of physics topics that these instruments can tackle is exceedingly wide and diverse. Neutrinos coming from outside the Earth, in association with other messengers, can contribute to clarify the question of the mechanisms that power the astrophysical accelerators which are known to exist from the observation of high-energy cosmic and gamma rays. Cosmic neutrinos can also be used to bring relevant information about the nature of dark matter, to study the intrinsic properties of neutrinos and to look for physics beyond the Standard Model. Likewise, atmospheric neutrinos can be used to study an ample variety of particle physics issues, such as neutrino oscillation phenomena, the determination of the neutrino mass ordering, non-standard neutrino interactions, neutrino decays and a diversity of other physics topics. In this article, we review a selected number of these topics, chosen on the basis of their scientific relevance and the involvement in their study of the Spanish physics community working in the KM3NeT and ANTARES neutrino telescopes.
Address [Hernandez-Rey, Juan Jose; Calvo, David; Gozzini, Sara Rebecca; Real, Diego; Greus, Francisco Salesa; Losa, Agustin Sanchez; Zornoza, Juan de Dios; Zuniga, Juan] Univ Valencia, IFIC Inst Fis Corpuscular, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: juan.j.hernandez@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762321400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5145
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Pieterse, C.; Real, D.; Saina, A.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Review of the online analyses of multi-messenger alerts and electromagnetic transient events with the ANTARES neutrino telescope Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 08 Issue 8 Pages 072 - 23pp
Keywords neutrino astronomy; neutrino detectors
Abstract By constantly monitoring a very large portion of the sky, neutrino telescopes are well-designed to detect neutrinos emitted by transient astrophysical events. Real-time searches with the ANTARES telescope have been performed to look for neutrino candidates coincident with gamma-ray bursts detected by the Swift and Fermi satellites, high-energy neutrino events registered by IceCube, transient events from blazars monitored by HAWC, photon-neutrino coincidences by AMON notices and gravitational wave candidates observed by LIGO/Virgo. By requiring temporal coincidence, this approach increases the sensitivity and the significance of a potential discovery. This paper summarises the results of the followup performed of the ANTARES telescope between January 2014 and February 2022, which corresponds to the end of the data-taking period.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: dornic@cppm.in2p3.fr
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001068854500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5703
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 10 Issue 10 Pages 180 - 26pp
Keywords Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles theta(14), theta(24), theta(34) and the effective angle theta(mu e), over a broad range of mass squared difference Delta m(41)(2) similar to [10(-5), 10] eV(2), allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: jcoelho@apc.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000710339200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5010
Permanent link to this record
 

 
Author Real, D.; Sanchez Losa, A.; Diaz, A.; Salesa Greus, F.; Calvo, D.
Title The Neutrino Mediterranean Observatory Laser Beacon: Design and Qualification Type Journal Article
Year 2023 Publication Applied Sciences-Basel Abbreviated Journal Appl. Sci.-Basel
Volume (up) 13 Issue 17 Pages 9935 - 16pp
Keywords neutrino telescope; time calibration; laser beacon
Abstract This paper encapsulates details of the NEMO laser beacon's design, offering a profound contribution to the field of the time calibration of underwater neutrino telescopes. The mechanical design of the laser beacon, which operates at a depth of 3500 m, is presented, together with the design of the antibiofouling system employed to endure the operational pressure and optimize the operational range, enhancing its functionality and enabling time calibration among multiple towers. A noteworthy innovation central to this development lies in the battery system. This configuration enhances the device's portability, a crucial aspect in underwater operations. The comprehensive design of the laser beacon, encompassing the container housing, the requisite battery system for operation, electronics, and an effective antibiofouling system, is described in this paper. Additionally, this paper presents the findings of the laser beacon's qualification process.
Address [Real, Diego; Losa, Agustin Sanchez; Greus, Francisco Salesa; Calvo, David] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001063704500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5668
Permanent link to this record