|   | 
Details
   web
Records
Author Orrigo, S.E A. et al; Rubio, B.; Gelletly, W.; Aguilera, P.; Algora, A.; Morales, A.I.; Agramunt, J.; Guadilla, V.; Montaner-Piza, A.
Title beta decay of the very neutron-deficient Ge-60 and Ge-62 nuclei Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (up) 103 Issue 1 Pages 014324 - 12pp
Keywords
Abstract We report here the results of a study of the beta decay of the proton-rich Ge isotopes, Ge-60 and Ge-62, produced in an experiment at the RIKEN Nishina Center. We have improved our knowledge of the half-lives of Ge-62 [73.5(1) ms] and Ge-60 [25.0(3) ms] and its daughter nucleus, Ga-60 [69.4(2) ms]. We measured individual beta-delayed proton and gamma emissions and their related branching ratios. Decay schemes and absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. A total beta-delayed proton-emission branching ratio of 67(3)% has been obtained for Ge-60. New information has been obtained on the energy levels populated in Ga-60 and on the 1/2(-) excited state in the beta p daughter Zn-59. We extracted a ground state-to-ground state feeding of 85.3(3)% for the decay of Ge-62. Eight new y lines have been added to the deexcitation of levels populated in the Ga-62 daughter.
Address [Orrigo, S. E. A.; Rubio, B.; Gelletly, W.; Aguilera, P.; Algora, A.; Morales, A., I; Agramunt, J.; Guadilla, V; Montaner-Piza, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: sonja.orrigo@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000613141500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4716
Permanent link to this record
 

 
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E.
Title Total absorption gamma-ray spectroscopy of the ss decays of Y-96gs,Y-m Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (up) 106 Issue 1 Pages 014306 - 14pp
Keywords
Abstract The ss decays of the ground state (gs) and isomeric state (m) of Y-96 have been studied with the total absorption gamma-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8(+) isomeric state from the 0(-) ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The ss-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in Zr-96, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the ss-detector efficiency, influencing the ss-intensity distribution obtained. Our results for Y-96gs (0(-)) confirm the large ground state to ground state ss-intensity probability, although a slightly larger value than reported in previous studies was obtained, amounting to 96.6(-2.1)(+0.3) % of the total ss intensity. Given that the decay of Y-96gs is the second most important contributor to the reactor antineutrino spectrum between 5 and 7 MeV, the impact of the present results on reactor antineutrino summation calculations has been evaluated. In the decay of Y-96m (8(+)), previously undetected ss intensity in transitions to states above 6 MeV has been observed. This shows the importance of total absorption gamma-ray spectroscopy measurements of ss decays with highly fragmented deexcitation patterns. Y-96m (8(+)) is a major contributor to reactor decay heat in uranium-plutonium and thorium-uranium fuels around 10 s after fission pulses, and the newly measured average ss and gamma energies differ significantly from the previous values in evaluated databases. The discrepancy is far above the previously quoted uncertainties. Finally, we also report on the successful implementation of an innovative total absorption gamma-ray spectroscopy analysis of the module-multiplicity gated spectra, as a first proof of principle to distinguish between decaying states with very different spin-parity values.
Address [Guadilla, V; Le Meur, L.; Fallot, M.; Briz, J. A.; Estienne, M.; Giot, L.; Porta, A.; Cucoanes, A.; Shiba, T.; Zakari-Issoufou, A-A] Univ Nantes, Subatech, IMT Atlantique, CNRS IN2P3, F-44307 Nantes, France, Email: vguadilla@fuw.edu.pl
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000832364800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5313
Permanent link to this record
 

 
Author Goigoux, T. et al; Algora, A.; Guadilla, V.; Montaner-Piza, A.; Morales, A.I.; Orrigo, S.E.A.; Rubio, B.; Gelletly, W.
Title Two-Proton Radioactivity of Kr-67 Type Journal Article
Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume (up) 117 Issue 16 Pages 162501 - 6pp
Keywords
Abstract In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from Kr-67. At the same time, no evidence for 2p emission of Ge-59 and Se-63, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to Kr-67 as being the best new candidate among the three for two-proton radioactivity. Kr-67 is only the fourth 2p ground-state emitter to be observed with a half-life of the order of a few milliseconds. The decay energy was determined to be 1690(17) keV, the 2p emission branching ratio is 37(14)%, and the half-life of Kr-67 is 7.4(30) ms.
Address [Goigoux, T.; Ascher, P.; Blank, B.; Gerbaux, M.; Giovinazzo, J.; Grevy, S.; Nieto, T. Kurtukian; Magron, C.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, UMR CNRS 5797, Chemin Solarium, F-33175 Gradignan, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000385641900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2831
Permanent link to this record
 

 
Author Algora, A. et al; Valencia, E.; Tain, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner-Piza, A.; Guadilla, V.
Title Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure Type Journal Article
Year 2014 Publication Nuclear Data Sheets Abbreviated Journal Nucl. Data Sheets
Volume (up) 120 Issue Pages 12-15
Keywords
Abstract An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br-87,Br-88 using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
Address [Algora, A.; Valencia, E.; Tain, J. L.; Jordan, M. D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: algora@ific.uv.es
Corporate Author Thesis
Publisher Academic Press Inc Elsevier Science Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0090-3752 ISBN Medium
Area Expedition Conference
Notes WOS:000339860100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1869
Permanent link to this record
 

 
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Aysto, J; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E.
Title Large Impact of the Decay of Niobium Isomers on the Reactor (v)over-bar(e) Summation Calculations Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume (up) 122 Issue 4 Pages 042502 - 6pp
Keywords
Abstract Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.
Address [Guadilla, V; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000457139600009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3894
Permanent link to this record