|   | 
Details
   web
Records
Author Esposito, R. et al; Domingo-Pardo, C.
Title Design of the third-generation lead-based neutron spallation target for the neutron time-of-flight facility at CERN Type Journal Article
Year 2021 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume (up) 24 Issue 9 Pages 093001 - 17pp
Keywords
Abstract The neutron time-of-flight (n_TOF) facility at the European Laboratory for Particle Physics (CERN) is a pulsed white-spectrum neutron spallation source producing neutrons for two experimental areas: the Experimental Area 1 (EAR1), located 185 m horizontally from the target, and the Experimental Area 2 (EAR2), located 20 m above the target. The target, based on pure lead, is impacted by a high-intensity 20-GeV/c pulsed proton beam. The facility was conceived to study neutron-nucleus interactions for neutron kinetic energies between a few meV to several GeV, with applications of interest for nuclear astrophysics, nuclear technology, and medical research. After the second-generation target reached the end of its lifetime, the facility underwent a major upgrade during CERN's Long Shutdown 2 (LS2, 2019-2021), which included the installation of the new third-generation neutron target. The first- and second-generation targets were based on water-cooled massive lead blocks and were designed focusing on EAR1, since EAR2 was built later. The new target is cooled by nitrogen gas to avoid erosion-corrosion and contamination of cooling water with radioactive lead spallation products. Moreover, the new design is optimized also for the vertical flight path and EAR2. This paper presents an overview of the target design focused on both physics and thermomechanical performance, and includes a description of the nitrogen cooling circuit and radiation protection studies.
Address [Esposito, R.; Calviani, M.; Aberle, O.; Barbagallo, M.; Coiffet, T.; Dragoni, F.; Ximenes, R. Franqueira; Giordanino, L.; Grenier, D.; Kershaw, K.; Maire, V.; Moyret, P.; Fontenla, A. Perez; Perillo-Marcone, A.; Pozzi, F.; Sgobba, S.; Timmins, M.; Vlachoudis, V.] European Lab Particle Phys CERN, CH-1211 Geneva 23, Switzerland, Email: raffaele.esposito@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000696029700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4963
Permanent link to this record
 

 
Author Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C.
Title Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume (up) 42 Issue Pages 1-6
Keywords Neutron background; Underground physics; He-3 proportional counters
Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).
Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000315371900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1351
Permanent link to this record
 

 
Author AGATA Collaboration (Lalovic, N. et al); Gadea, A.; Domingo-Pardo, C.
Title Study of isomeric states in Pb-198, Pb-200, Pb-202, Pb-206 and Hg-206 populated in fragmentation reactions Type Journal Article
Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume (up) 45 Issue 3 Pages 035105 - 27pp
Keywords gamma-ray spectroscopy; relativistic projectile fragmentation; direct reactions; isomeric decays; electromagnetic transitions; nuclear shell model
Abstract Isomeric states in isotopes in the vicinity of doubly-magic Pb-208 were populated following reactions of a relativistic Pb-208 primary beam impinging on a Be-9 fragmentation target. Secondary beams of Pb-198,Pb-200,Pb-202,Pb-206 and Hg-206 were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed gamma rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei Pb-206/Hg-206 was found to differ from the population of multi neutron-hole isomeric states in Pb-198,Pb-200,Pb-202.
Address [Lalovic, N.; Rudolph, D.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.; Gellanki, J.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden, Email: Natasa.Lalovic@nuclear.lu.se
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000424906600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3488
Permanent link to this record
 

 
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L.
Title Neutron-induced fission cross-section of U-233 in the energy range 0.5 < E-n < 20 MeV Type Journal Article
Year 2011 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume (up) 47 Issue 1 Pages 2 - 7pp
Keywords
Abstract The neutron-induced fission cross-section of U-233 has been measured at the CERN nTOF facility relative to the standard fission cross-section of U-235 between 0.5 and 20MeV. The experiment was performed with a fast ionization chamber for the detection of the fission fragments and to discriminate against alpha-particles from the natural radioactivity of the samples. The high instantaneous flux and the low background of the nTOF facility result in data with uncertainties of approximate to 3%, which were found in good agreement with previous experiments. The high quality of the present results allows to improve the evaluation of the U-233(n, f) cross-section and, consequently, the design of energy systems based on the Th/U cycle.
Address [Belloni, F.; Milazzo, P. M.; Abbondanno, U.; Fujii, K.; Moreau, C.] Ist Nazl Fis Nucl INFN, Trieste, Italy, Email: paolo.milazzo@ts.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes ISI:000288550800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 539
Permanent link to this record
 

 
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L.
Title Measurement of the neutron-induced fission cross-section of Am-243 relative to U-235 from 0.5 to 20 MeV Type Journal Article
Year 2011 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume (up) 47 Issue 12 Pages 160 - 8pp
Keywords
Abstract The ratio of the neutron-induced fission cross-sections of Am-243 and U-235 was measured in the energy range from 0.5 to 20 MeV with uncertainties of approximate to 4%. The experiment was performed at the CERN n_TOF facility using a fast ionization chamber. With the good counting statistics that could be achieved thanks to the high instantaneous flux and the low backgrounds, the present results are useful for resolving discrepancies in previous data sets and are important for future reactors with improved fuel burn-up.
Address [Belloni, F.; Calviani, M.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Fujii, K.; Gramegna, F.; Moreau, C.] Ist Nazl Fis Nucl INFN, Lab Nazl Legnaro, Trieste, Italy, Email: paolo.milazzo@ts.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000300285100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 904
Permanent link to this record