Roser, J., Barrientos, L., Bello, P., Borja-Lloret, M., Calatayud, J. M., Casaña, J. V., et al. (2025). Radiopharmaceutical imaging of phantoms and patients with MACACO III Compton camera. Phys. Medica, 132, 104928–8pp.
Abstract: Background and purpose: The use of Compton cameras for imaging radioisotopes in nuclear medicine offers potential advantages over conventional gamma cameras in some aspects. In this work, we present the first results in this field with the Compton camera prototype MACACO III after a measurement campaign in La Fe Hospital (Valencia, Spain). Methods: Images of Derenzo-like phantoms filled with 18F-FDG and 131I-NaI have been obtained with MACACO III and, in the latter case, with gamma cameras available in the hospital. Subsequently, a metastatic lesion in a patient treated with 131I-NaI after thyroid gland resection was imaged. Results: The 18F-FDG phantom images show the prototype capability of identifying up to 4 mm diameter rods. The measurements with 131I-NaI-filled phantoms demonstrate the clear improvement of the spatial resolution attainable with MACACO III when compared with images obtained with the gamma cameras available in the hospital. Finally, the image of the patient metastatic lesion obtained with the Compton camera was found to be consistent with the gamma camera inspection image. Conclusion: These encouraging results demonstrate MACACO III's capability for radiopharmaceutical imaging and open a door for its application to nuclear medicine.
|
Viegas, R., Roser, J., Barrientos, L., Borja-Lloret, M., Casaña, J. V., Lopez, J. G., et al. (2023). Characterization of a Compton camera based on the TOFPET2 ASIC. Radiat. Phys. Chem., 202, 110507–11pp.
Abstract: The use of Compton cameras for medical imaging and its interest as a hadron therapy treatment monitoring has increased in the last decade with the development of silicon photomultipliers. MACACOp is a Compton camera prototype designed and assembled at the IRIS group of IFIC-Valencia. This Compton camera is based on monolithic Lanthanum (III) Bromide crystals and silicon photomultipliers, and employs the novel TOFPET2 ASIC as readout electronics. This system emerged as an alternative to MACACO II prototype, with the aim of improving its limited time resolution. To test the performance of the ASIC in a Compton camera setup, the prototype was characterized, both in laboratory and in-beam. A time resolution of 1.5 ns was obtained after time corrections, which improves greatly the performance of the MACACO II. Moreover, the results obtained at high photon energies demonstrate the ability of the system to obtain 1 mm displacements of the reconstructed spots. The results reinforce the potential of the system as a monitoring device for hadron therapy.
|
Barrientos, L., Borja-Lloret, M., Casaña, J. V., Hueso-Gonzalez, F., Ros, A., Roser, J., et al. (2023). System characterization and performance studies with MACACO III Compton camera. Radiat. Phys. Chem., 208, 110922–13pp.
Abstract: The IRIS group of IFIC-Valencia has developed a Compton camera prototype. The system detectors are made of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. Two models of silicon photomultipliers arrays with different micro pixel pitch (25 and 50 μm) have been chosen as possible candidates to improve the response of the new system. Characterization studies with a 22Na point-like source have indicated that the 25 μm photodetector provided better performance in terms of energy resolution (5.2% FWHM at 511 keV) and angular resolution (6.9 degrees FWHM at 1275 keV), and more stability with temperature variations. In addition, MACACO III imaging capabilities have been assessed using a structure composed of thirty-seven 22Na point-like sources. Furthermore, in order to evaluate possible ways of improving the system performance, several studies have been carried out by means of simulations both in realistic and performance improved conditions. In this work, the system performance is evaluated for its future application in different areas.
|
Migueis, F., Casaña, J. V., Garcia-Fernandez, D., Hueso-Gonzalez, F., Llosa, G., Prieto, A. F., et al. (2025). Sensitivity of coaxial prompt gamma-ray monitoring in heterogeneous geometries: A Monte Carlo simulation study. Radiat. Phys. Chem., 232, 112639–11pp.
Abstract: Proton beams offer significant advantages over conventional radiotherapy due to their unique interaction with matter. Specifically, the ionization density caused by these beams is higher in a well-defined region (the Bragg peak) with a sharp decline in intensity beyond a specific depth. However, variations in proton range – often caused by changes in patient anatomy and morphology during treatment – can introduce uncertainties in dose distribution. To account for this, clinicians apply conservative margins, which limit the full potential of proton therapy. Efforts have been focused on developing proton range and dose distribution monitoring systems to reduce the need for large safety margins. These systems are based on detecting and analyzing the byproducts that result from the interaction between the proton beams and tissue. In this article, we focused specifically on a system that aims to detect photons called prompt gamma (PG) rays. We conducted Monte Carlo simulations of proton beams interacting with anthropomorphic phantoms of varying densities to simulate morphological changes. A single scintillation detector was positioned coaxially with the beam and behind the phantom to capture the emitted PG rays in each scenario. Our analysis focused on discrepancies in proton range that resulted from irradiating an anthropomorphic head phantom with varying brain tissue densities and detecting secondary particles resulting from these interactions. We observed potential correlations between gamma-ray signatures and variations in proton range and energy deposition, suggesting that this monitoring technique could be effective for real-world clinical applications.
|
Barrientos, L., Borja-Lloret, M., Etxebeste, A., Muñoz, E., Oliver, J. F., Ros, A., et al. (2021). Performance evaluation of MACACO II Compton camera. Nucl. Instrum. Methods Phys. Res. A, 1014, 165702–7pp.
Abstract: The IRIS group at IFIC-Valencia has developed a second version of a Compton camera prototype for hadron therapy treatment monitoring, with the aim of improving the performance with respect to its predecessor. The system is composed of three Lanthanum (III) bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs). The detector energy resolution has been improved to 5.6% FWHM at 511 keV and an angular resolution of 8.0 degrees has been obtained. Images of a Na-22 point-like source have been reconstructed selecting two and three interaction events. Moreover, the experimental data have been reproduced with Monte Carlo simulations using a Compton camera module (CCMod) in GATE v8.2 obtaining a good correlation.
|