|   | 
Details
   web
Records
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Aysto, J; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E.
Title Large Impact of the Decay of Niobium Isomers on the Reactor (v)over-bar(e) Summation Calculations Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 122 Issue 4 Pages 042502 - 6pp
Keywords
Abstract Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.
Address [Guadilla, V; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000457139600009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3894
Permanent link to this record
 

 
Author Gottardo, A. et al; Gadea, A.; Algora, A.
Title New spectroscopic information on Tl-211,Tl-213: A changing structure beyond the N=126 shell closure Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 5 Pages 054326 - 7pp
Keywords
Abstract The neutron-rich isotopes Tl-211,Tl-213, beyond the N = 126 shell closure, have been studied for the first time in isomer gamma-ray decay, exploiting the fragmentation of a primary uranium beam at the Fragment Separator-Rare Isotopes Investigation at GSI setup. The observed isomeric states in Tl-211,Tl-213 show a deviation from the seniority-like scheme of Tl-209. The possible interpretation of the data is discussed on the basis of energy-level systematics and shell-model calculations.
Address [Gottardo, A.; Valiente-Dobon, J. J.; de Angelis, G.; Napoli, D. R.; Sahin, E.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: andrea.gottardo@lnl.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000469018900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4025
Permanent link to this record
 

 
Author Diel, F.; Fujita, Y.; Fujita, H.; Cappuzzello, F.; Ganioglu, E.; Grewe, E.W.; Hashimoto, T.; Hatanaka, K.; Honma, M.; Itoh, T.; Jolie, J.; Liu, B.; Otsuka, T.; Takahisa, K.; Susoy, G.; Rubio, B.; Tamii, A.
Title High-resolution study of the Gamow-Teller (GT_) strength in the Zn-64(He-3, t) Ga-64 reaction Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 5 Pages 054322 - 10pp
Keywords
Abstract Gamow-Teller (GT) transitions starting from the T-z = +2 nucleus Zn-64 to the T-z = +1 nucleus Ga-64 were studied in a (p, n)-type (He-3,t) charge-exchange reaction at a beam energy of 140 MeV/nucleon and scattering angles close to 0 degrees. Here, T-z is the z component of the isospin T. The experiment was conducted at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. An energy resolution of approximate to 34 keV was achieved by applying beam matching techniques to the Grand Raiden magnetic spectrometer system. With our good resolution, we could observe GT strength fragmented in many states up to an excitation energy of approximate to 11 MeV. By performing angular distribution analysis, we could identify states in Ga-64 excited by GT transitions. The reduced GT transition strengths [B(GT)values] were calculated assuming the proportionality between the cross sections and the B(GT)values. Shell-model calculations using the GXPF1J interaction reproduced the B(GT)strength distribution throughout the spectrum. States with isospin T = 3 were identified by comparing the Zn-64(He-3,t)Ga-64 spectrum with a Zn-64(d, He-2)Cu-64 spectrum. Relative excitation energies of the corresponding structures are in good agreement, supporting the robustness of isospin symmetry in the mass number A = 64 nuclei.
Address [Diel, F.; Jolie, J.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: fdiel@ikp.uni-koeln.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000469018000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4026
Permanent link to this record
 

 
Author n_TOF Collaboration (Praena, J. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement and resonance analysis of the S-33(n,alpha)Si-30 cross section at the CERN n_TOF facility in the energy region from 10 to 300 keV Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 97 Issue 6 Pages 064603 - 10pp
Keywords
Abstract The (33)(n , alpha)Si-30 cross section has been measured at the neutron time-of-flight (n_TOF) facility at CERN in the neutron energy range from 10 to 300 keV relative to the B-10(n, alpha)(7) Li cross-section standard. Both reactions were measured simultaneously with a set of micromegas detectors. The flight path of 185 m has allowed us to obtain the cross section with high-energy resolution. An accurate description of the resonances has been performed by means of the multilevel multichannel R-matrix code SAMMY. The results show a significantly higher area of the biggest resonance (13.45 keV) than the unique high-resolution (n , alpha) measurement. The new parametrization of the 13.45-keV resonance is similar to that of the unique transmission measurement. This resonance is a matter of research in neutron-capture therapy. The S-33(n, alpha)Si-30 cross section has been studied in previous works because of its role in the production of S-36 in stars, which is currently overproduced in stellar models compared to observations.
Address [Praena, J.; Porras, I] Univ Granada, Granada, Spain, Email: jpraena@ugr.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000434017300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3597
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement and analysis of the Am-241 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 97 Issue 5 Pages 054616 - 21pp
Keywords
Abstract The Am-241(n, gamma) cross section has been measured at the nTOF facility at CERN with the nTOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.
Address [Mendoza, E.; Cano-Ott, D.; Balibrea, J.; Becares, V; Garcia, A. R.; Gonzalez, E.; Lopez, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000433032300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3584
Permanent link to this record
 

 
Author n_TOF Collaboration (Lerendegui-Marco, J. et al.); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Radiative neutron capture on Pu-242 in the resonance region at the CERN n_TOF-EAR1 facility Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 97 Issue 2 Pages 024605 - 21pp
Keywords
Abstract The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu-242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on Pu-242 carried out at nTOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The Pu-242(n, gamma) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of nTOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA.
Address [Lerendegui-Marco, J.; Guerrero, C.; Quesada, J. M.; Cortes-Giraldo, M. A.; Praena, J.; Sabate-Gilarte, M.] Univ Seville, Dept Fis Atom Mol & Nucl, E-41012 Seville, Spain, Email: cguerrero4@us.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000424190700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3474
Permanent link to this record
 

 
Author n_TOF Collaboration (Wright, T. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement of the U-238(n,gamma) cross section up to 80 keV with the Total Absorption Calorimeter at the CERN n_TOF facility Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 96 Issue 6 Pages 064601 - 11pp
Keywords
Abstract The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5) x 10(-4) atoms/barn areal density U-238 sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.
Address [Wright, T.; Billowes, J.; Ryan, J. A.; Ware, T.] Univ Manchester, Manchester, Lancs, England, Email: tobias.wright@manchester.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000416848700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3392
Permanent link to this record
 

 
Author Gjestvang, D. et al; Algora, A.
Title Examination of how properties of a fissioning system impact isomeric yield ratios of the fragments Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 6 Pages 064602 - 12pp
Keywords
Abstract The population of isomeric states in the prompt decay of fission fragments-so-called isomeric yield ratios (IYRs)-is known to be sensitive to the angular momentum J that the fragment emerged with, and may therefore contain valuable information on the mechanism behind the fission process. In this work, we investigate how changes in the fissioning system impact the measured IYRs of fission fragments to learn more about what parameters affect angular momentum generation. To enable this, a new technique for measuring IYRs is first demonstrated. It is based on the time of arrival of discrete gamma rays, and has the advantage that it enables the study of the IYR as a function of properties of the partner nucleus. This technique is used to extract the IYR of 134Te, strongly populated in actinide fission, from the three different fissioning systems: 232Th(n, f), 238U(n, f), at two different neutron energies, as well as 252Cf(sf). The impacts of changing the fissioning system, the compound nuclear excitation energy, the minimum J of the binary partner, and the number of neutrons emitted on the IYR of 134Te are determined. The decay code TALYS is used in combination with the fission simulation code FREYA to calculate the primary fragment angular momentum from the IYR. We find that the IYR of 134Te has a slope of 0.004 +/- 0.002 with increase in compound nucleus (CN) mass. When investigating the impact on the IYR of increased CN excitation energy, we find no change with an energy increase similar to the difference between thermal and fast fission. By varying the mass of the partner fragment emerging with 134Te, it is revealed that the IYR of 134Te is independent of the total amount of prompt neutrons emitted from the fragment pair. This indicates that neutrons carry minimal angular momentum away from the fission fragments. Comparisons with the FREYA+TALYS simulations reveal that the average angular momentum in 134Te following 238U(n, f) is 6.0 h over bar . This is not consistent with the value deduced from recent CGMF calculations. Finally, the IYR sensitivity to the angular momentum of the primary fragment is discussed. These results are not only important to help understanding the underlying mechanism in nuclear fission, but can also be used to constrain and benchmark fission models, and are relevant to the gamma -ray heating problem of reactors.
Address [Gjestvang, D.; Siem, S.; Nemer, J.; Paulsen, W.; Popovitch, Y.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway, Email: dorthea.gjestvang@fys.uio.no
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001160674400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5947
Permanent link to this record
 

 
Author Yokoyama, R. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tolosa-Delgado, A.
Title β-delayed neutron emissions from N > 50 gallium isotopes Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 6 Pages 064307 - 15pp
Keywords
Abstract beta-delayed gamma-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of 3He neutron counters (BRIKEN). beta-2n-gamma events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the gamma branching ratios were obtained for these isotopes, and the neutron emission probabilities (P-xn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P-1n and P-2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P-2n/P-1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and gamma branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J <= 3 for the unknown ground-state spin of the odd-odd nucleus Ga-86, from the I gamma(4(+)-> 2(+))/I-gamma(2(+)-> 0(+)) ratio of Ga-84 and the P-2n/P-1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to gamma measurements of the multineutron emitters.
Address [Yokoyama, R.; Grzywacz, R.; Rasco, B. C.; Brewer, N.; Heideman, J.; King, T. T.; Madurga, M.; Singh, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: yokoyama@cns.s.u-tokyo.ac.jp
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001159167500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5939
Permanent link to this record
 

 
Author Davesne, D.; Holt, J.W.; Navarro, J.; Pastore, A.
Title Landau sum rules with noncentral quasiparticle interactions Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 3 Pages 034003 - 7pp
Keywords
Abstract We derive explicit expressions for the Landau sum rules for the case of the most general spin-dependent quasiparticle interaction including all possible tensor interactions. For pure neutron matter, we investigate the convergence of the sum rules at different orders of approximation. Employing modern nuclear Hamiltonians based on chiral effective field theory, we find that the inclusion of noncentral interactions improves the convergence of the sum rules only for low densities (n <= 0.1 fm-3). Around nuclear matter saturation density, we find that even ostensibly perturbative nuclear interactions violate the sum rules considerably. By artificially weakening the strength of the nuclear Hamiltonian, the convergence can be improved.
Address [Davesne, D.] Univ Lyon, Univ Lyon 1, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001088200900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5750
Permanent link to this record