|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title Observation of the B0s → χc1(3872)π+π- decay Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 084 - 25pp
Keywords B Physics; Hadron-Hadron Scattering; Quarkonium; Spectroscopy
Abstract The first observation of the B-s(0) -> (chi(c1)(3872) -> J/Psi pi(broken vertical bar) pi(-)) pi(broken vertical bar) pi(-) decay is reported using proton-proton collision data, corresponding to integrated luminosities of 1, 2 and 6 fb(-1), collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13TeV, respectively. The ratio of branching fractions relative to the B-s(0) -> (Psi(2S) -> J/Psi pi(+) pi(-)) pi(+) pi(-) decay is measured to be [GRAPHICS] where the first uncertainty is statistical and the second systematic. The mass spectrum of the pi(+) pi(-) system recoiling against the chi(c1)(3872) meson exhibits a large contribution from B-s(0) -> chi(c1)(3872) (integral(0)(980) -> pi(+) pi(-)) decays.
Address [Leite, J. Baptista de Souza; Bediaga, I. B.; Torres, M. Cruz; Da Graca, U. De Freitas Carneiro; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001063414300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5744
Permanent link to this record
 

 
Author Garcia-Barcelo, J.M.; Melcon, A.A.; Diaz-Morcillo, A.; Gimeno, B.; Lozano-Guerrero, A.J.; Monzi-Cabrera, J.; Navarro-Madrid, J.R.; Navarro, P.
Title Methods and restrictions to increase the volume of resonant rectangular-section haloscopes for detecting dark matter axions Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 098 - 37pp
Keywords Axions and ALPs; Particle Nature of Dark Matter
Abstract Haloscopes are resonant cavities that serve as detectors of dark matter axions when they are immersed in a strong static magnetic field. In order to increase the volume and improve space compatibility with dipole or solenoid magnets for axion searches, various haloscope design techniques for rectangular geometries are discussed in this study. The volume limits of two types of haloscopes are explored: those based on single cavities and those based on multicavities. In both cases, possibilities for increasing the volume of long and/or tall structures are presented. For multicavities, 1D geometries are explored to optimise the space in the magnets. Also, 2D and 3D geometries are introduced as a first step in laying the foundations for the development of these kinds of topologies. The results prove the usefulness of the developed methods, evidencing the ample room for improvement in rectangular haloscope designs nowadays. A factor of three orders of magnitude improvement in volume compared with a single cavity based on the WR-90 standard waveguide is obtained with the design of a long and tall single cavity. Similar procedures have been applied for long and tall multicavities. Experimental measurements are shown for prototypes based on tall multicavities and 2D structures, demonstrating the feasibility of using these types of geometries to increase the volume of real haloscopes.
Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Monzo-Cabrera, J.; Navarro-Madrid, J. R.; Navarro, P.] Univ Politecn Cartagena, Dept Tecnol Informac & Comun, Pl Hosp 1, Cartagena 30302, Spain, Email: josemaria.garcia@upct.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001050076700002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5611
Permanent link to this record
 

 
Author Candido, A.; Garcia, A.; Magni, G.; Rabemananjara, T.; Rojo, J.; Stegeman, R.
Title Neutrino structure functions from GeV to EeV energies Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 149 - 78pp
Keywords Deep Inelastic Scattering or Small-x Physics; Neutrino Interactions; Parton Distributions
Abstract The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers (Q(2) less than or similar to few GeV2), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies E-nu up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to the multi-EeV region accessible at neutrino telescopes. Our NNSF nu approach combines a machine-learning parametrisation of experimental data with pQCD calculations based on state-of-the-art analyses of proton and nuclear parton distributions (PDFs). We compare our determination to other calculations, in particular to the popular Bodek-Yang model. We provide updated predictions for inclusive cross sections for a range of energies and target nuclei, including those relevant for LHC far-forward neutrino experiments such as FASER nu, SND@LHC, and the Forward Physics Facility. The NNSF nu determination is made available as fast interpolation LHAPDF grids, and it can be accessed both through an independent driver code and directly interfaced to neutrino event generators such as GENIE.
Address [Candido, Alessandro] Univ Milan, Dipartimento Fis, Tif Lab, Via Celoria 16, I-20133 Milan, Italy, Email: alessandro.candido@mi.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992767300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5559
Permanent link to this record
 

 
Author Autieri, A.; Cieri, L.; Ferrera, G.; Sborlini, G.F.R.
Title Combining QED and QCD transverse-momentum resummation for W and Z boson production at hadron colliders Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 104 - 30pp
Keywords Electroweak Precision Physics; Precision QED; Resummation
Abstract In this article, we consider the transverse momentum (qT) distribution of W and Z bosons produced in hadronic collisions. We combine the qT resummation for QED and QCD radiation including the QED soft emissions from the W boson in the final state. In particular, we perform the resummation of enhanced logarithmic contributions due to soft and collinear emissions at next-to-leading accuracy in QED, leading-order accuracy for mixed QED-QCD and next-to-next-to-leading accuracy in QCD. In the small-qT region we consistently include in our results the next-to-next-to-leading order (i.e. two loops) QCD corrections and the next-to-leading order (i.e. one loop) electroweak corrections. The matching with the fixed-order calculation at large qT has been performed at next-to-leading order in QCD (i.e. at O(alpha(2)(S))) and at leading order in QED. We show numerical results for W and Z production at the Tevatron and the LHC. Finally, we consider the effect of combined QCD and QED resummation for the ratio of W and Z qT distributions, and we study the impact of the QED corrections providing an estimate of the corresponding perturbative uncertainties.
Address [Autieri, Andrea; Cieri, Leandro] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cientif, E-46980 Valencia, Spain, Email: andrea.autieri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001030009700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5596
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in √s=13 TeV pp collisions with the ATLAS detector Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 166 - 74pp
Keywords Hadron-Hadron Scattering
Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H -> e tau and H -> μtau, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy root s = 13 TeV, corresponding to an integrated luminosity of 138 fb(-1). Leptonic (tau -> l nu(l)nu(tau)) and hadronic (tau -> hadrons nu(tau)) decays of the tau-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B(H -> e tau) < 0.20% (0.12%) and B(H -> μtau ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H -> e tau and H -> μtau signals. The best-fit branching ratio difference, B(H -> μtau) -> B(H -> e tau), measured with the Symmetry method in the channel where the tau-lepton decays to leptons, is (0.25 0.10)%, compatible with a value of zero within 2.5 sigma.
Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001061947900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5678
Permanent link to this record
 

 
Author Perez Adan, D.; Bahl, H.; Grohsjean, A.; Martin Lozano, V.; Schwanenberger, C.; Weiglein, G.
Title A new LHC search for dark matter produced via heavy Higgs bosons using simplified models Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 151 - 27pp
Keywords Dark Matter at Colliders; Specific BSM Phenomenology
Abstract Searches for dark matter produced via scalar resonances in final states consisting of Standard Model (SM) particles and missing transverse momentum are of high relevance at the LHC. Motivated by dark-matter portal models, most existing searches are optimized for unbalanced decay topologies for which the missing momentum recoils against the visible SM particles. In this work, we show that existing searches are also sensitive to a wider class of models, which we characterize by a recently presented simplified model framework. We point out that searches for models with a balanced decay topology can be further improved with more dedicated analysis strategies. For this study, we investigate the feasibility of a new search for bottom-quark associated neutral Higgs production with a b (b) over barZ + p(T)(miss) final state and perform a detailed collider analysis. Our projected results in the different simplified model topologies investigated here can be easily reinterpreted in a wide range of models of physics beyond the SM, which we explicitly demonstrate for the example of the Two-Higgs-Doublet model with an additional pseudoscalar Higgs boson.
Address [Adan, Danyer Perez; Schwanenberger, Christian; Weiglein, Georg] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: danyer.perez.adan@desy.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001073505200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5702
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V.
Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 081 - 47pp
Keywords SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology
Abstract We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.
Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001067194100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5688
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Reinterpretation of searches for long-lived particles from meson decays Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 031 - 31pp
Keywords New Light Particles; Axions and ALPs; Sterile or Heavy Neutrinos; SMEFT
Abstract Many models beyond the Standard Model predict light and feebly interacting particles that are often long-lived. These long-lived particles (LLPs) in many cases can be produced from meson decays. In this work, we propose a simple and quick reinterpretation method for models predicting LLPs produced from meson decays. With the method, we are not required to run Monte-Carlo simulation, implement detector geometries and efficiencies, or apply experimental cuts in an event analysis, as typically done in recasting and reinterpretation works. The main ingredients our method requires are only the theoretical input, allowing for computation of the production and decay rates of the LLPs. There are two conditions for the method to work: firstly, the LLPs in the models considered should be produced from a set of mesons with similar mass and lifetime (or the same meson) and second, the LLPs should, in general, have a lab-frame decay length much larger than the distance between the interaction point and the detector. As an example, we use this method to reinterpret exclusion bounds on heavy neutral leptons (HNLs) in the minimal “3+1” scenario, into those for HNLs in the general effective-field-theory framework as well as for axion-like particles. We are able to reproduce existing results, and obtain new bounds via reinterpretation of past experimental results, in particular, from CHARM and Belle.
Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, 22085, E-46071 Valencia, Spain, Email: wzs@mx.nthu.edu.tw
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000983316500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5528
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aitllo, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Probing invisible neutrino decay with KM3NeT/ORCA Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 090 - 30pp
Keywords Beyond Standard Model; Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state v3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/alpha 3 = T3/m3 < 180 ps/eV at 90% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for theta(23), Delta m(31)(2) and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: victor.carretero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992450100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5564
Permanent link to this record
 

 
Author Davier, M.; Diaz-Calderon, D.; Malaescu, B.; Pich, A.; Rodriguez-Sanchez, A.; Zhang, Z.
Title The Euclidean Adler function and its interplay with Delta alpha(had)(QED) and alpha(s) Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 067 - 57pp
Keywords Correlation Functions; Effective Field Theories of QCD; The Strong Coupling
Abstract Three different approaches to precisely describe the Adler function in the Euclidean regime at around 2 GeVs are available: dispersion relations based on the hadronic production data in e(+)e(-) annihilation, lattice simulations and perturbative QCD (pQCD). We make a comprehensive study of the perturbative approach, supplemented with the leading power corrections in the operator product expansion. All known contributions are included, with a careful assessment of uncertainties. The pQCD predictions are compared with the Adler functions extracted from ?a( QED)(had)(Q(2)), using both the DHMZ compilation of e(+)e(-) data and published lattice results. Taking as input the FLAG value of a(s), the pQCD Adler function turns out to be in good agreement with the lattice data, while the dispersive results lie systematically below them. Finally, we explore the sensitivity to a(s) of the direct comparison between the data-driven, lattice and QCD Euclidean Adler functions. The precision with which the renormalisation group equation can be tested is also evaluated.
Address [Davier, M.; Zhang, Z.] Univ Paris Saclay, CNRS IN2P3, IJCLab, F-91405 Orsay, France, Email: davier@lal.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000985363600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5533
Permanent link to this record