toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Abdullahi, A.M. et al; Lopez-Pavon, J. url  doi
openurl 
  Title The present and future status of heavy neutral leptons Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 2 Pages 020501 - 100pp  
  Keywords Neutrinos; beyond the standard model; sterile neutrinos  
  Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.  
  Address [Abdullahi, Asli M.; Plestid, Ryan] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA, Email: shoemaker@vt.edu  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000918351600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5486  
Permanent link to this record
 

 
Author Arguelles, C.A. et al; Barenboim, G. url  doi
openurl 
  Title Snowmass white paper: beyond the standard model effects on neutrino flavor Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 1 Pages 15 - 57pp  
  Keywords  
  Abstract Neutrinos are one of the most promising messengers for signals of new physics Beyond the Standard Model (BSM). On the theoretical side, their elusive nature, combined with their unknown mass mechanism, seems to indicate that the neutrino sector is indeed opening a window to new physics. On the experimental side, several long-standing anomalies have been reported in the past decades, providing a strong motivation to thoroughly test the standard three-neutrino oscillation paradigm. In this Snowmass21 white paper, we explore the potential of current and future neutrino experiments to explore BSM effects on neutrino flavor during the next decade.  
  Address [Arguelles, C. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000912507200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5459  
Permanent link to this record
 

 
Author Dorigo, T. et al; Ramos, A.; Ruiz de Austri, R. url  doi
openurl 
  Title Toward the end-to-end optimization of particle physics instruments with differentiable programming Type Journal Article
  Year 2023 Publication Reviews in Physics Abbreviated Journal Rev. Phys.  
  Volume 10 Issue Pages 100085 - pp  
  Keywords  
  Abstract The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, due to the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, “experience-driven” layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized through a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6096  
Permanent link to this record
 

 
Author De La Torre Luque, P.; Gaggero, D.; Grasso, D.; Fornieri, O.; Egberts, K.; Steppa, C.; Evoli, C. url  doi
openurl 
  Title Galactic diffuse gamma rays meet the PeV frontier Type Journal Article
  Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 672 Issue Pages A58 - 11pp  
  Keywords diffusion; cosmic rays; Galaxy; general; gamma rays; diffuse background  
  Abstract The Tibet AS gamma and LHAASO collaborations recently reported the observation of a gamma-ray diffuse emission with energy up to the PeV level from the Galactic plane.Aims. We discuss the relevance of non-uniform cosmic-ray transport scenarios and the implications of these results for cosmic-ray physics.Methods. We used the DRAGON and HERMES codes to build high-resolution maps and spectral distributions of that emission for several representative models under the condition that they reproduce a wide set of local cosmic-ray data up to 100 PeV.Results. We show that the energy spectra measured by Tibet AS gamma, LHAASO, ARGO-YBJ, and Fermi-LAT in several regions of interest in the sky can all be reasonably described in terms of the emission arising by the Galactic cosmic-ray “sea”. We also show that all our models are compatible with IceTop gamma-ray upper limits.Conclusions. We compare the predictions of conventional and space-dependent transport models with those data sets. Although the Fermi-LAT, ARGO-YBJ, and LHAASO preliminary data slightly favor this scenario, due to the still large experimental errors, the poorly known source spectral shape at the highest energies, the potential role of spatial fluctuations in the leptonic component, and a possible larger-than-expected contamination due to unresolved sources, a solid confirmation requires further investigations. We discuss which measurements will be most relevant in order to resolve the remaining degeneracy.  
  Address [Luque, P. De La Torre] Stockholm Univ, Alba Nova, S-10691 Stockholm, Sweden, Email: pedro.delatorreluque@fysik.su.se  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000960963900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5508  
Permanent link to this record
 

 
Author Moretti, F.; Del Prete, M.; Montani, G. url  doi
openurl 
  Title Linear analysis of the gravitational beam-plasma instability Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 6 Pages 486 - 16pp  
  Keywords  
  Abstract We investigate the well-known phenomenon of the beam-plasma instability in the gravitational sector when a fast population of particles interacts with the massive scalar mode of a Horndeski theory of gravity, resulting in linear growth of the latter amplitude. Following the approach used in the standard electromagnetic case, we start from the dielectric representation of the gravitational plasma, as introduced in a previous analysis of the Landau damping for the scalar Horndeski mode. We then set up the modified Vlasov-Einstein equation, using a Dirac delta function to describe the fast beam distribution. We thus provide an analytical expression for the dispersion relation, and we demonstrate the existence of a nonzero growth rate for the linear evolution of the Horndeski scalar mode. A numerical investigation is then performed with a trapezoidal beam distribution function, which confirms the analytical results and allows us to demonstrate how the growth rate decreases as the beam spread increases.  
  Address [Moretti, Fabio] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, IFIC, Valencia 46100, Spain, Email: fabio.moretti@ext.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001005587700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5570  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva