toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, J.G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Search for t(t)over-bar resonances in fully hadronic final states in pp collisions at root s=13 TeV with the ATLAS detector Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 061 - 43pp  
  Keywords Jet substructure; Beyond Standard Model; Hadron-Hadron scattering (experiments); Heavy quark production; Jets  
  Abstract This paper presents a search for new heavy particles decaying into a pair of top quarks using 139 fb(-1) of proton-proton collision data recorded at a centre-of-mass energy of root s = 13TeV with the ATLAS detector at the Large Hadron Collider. The search is performed using events consistent with pair production of high-transverse-momentum top quarks and their subsequent decays into the fully hadronic final states. The analysis is optimized for resonances decaying into a t (t) over bar pair with mass above 1.4TeV, exploiting a dedicated multivariate technique with jet substructure to identify hadronically decaying top quarks using large-radius jets and evaluating the background expectation from data. No significant deviation from the background prediction is observed. Limits are set on the production cross-section times branching fraction for the new Z' boson in a topcolor-assisted-technicolor model. The Z0 boson masses below 3.9 and 4.7TeV are excluded at 95% confidence level for the decay widths of 1% and 3%, respectively.  
  Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000579438800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4574  
Permanent link to this record
 

 
Author de Gouvea, A.; De Romeri, V.; Ternes, C.A. url  doi
openurl 
  Title Probing neutrino quantum decoherence at reactor experiments Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 049 - 17pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract We explore how well reactor antineutrino experiments can constrain or measure the loss of quantum coherence in neutrino oscillations. We assume that decoherence effects are encoded in the size of the neutrino wave-packet, sigma. We find that the current experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) already constrain sigma >1.0x10(-4) nm and estimate that future data from the Jiangmen Underground Neutrino Observatory (JUNO) would be sensitive to sigma <2.1x10(-3) nm. If the effects of loss of coherence are within the sensitivity of JUNO, we expect sigma to be measured with good precision. The discovery of nontrivial decoherence effects in JUNO would indicate that our understanding of the coherence of neutrino sources is, at least, incomplete.  
  Address [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA, Email: degouvea@northwestern.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561756000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4501  
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Rocha-Moran, P.; Vicente, A. url  doi
openurl 
  Title Minimal 3-loop neutrino mass models and charged lepton flavor violation Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 067 - 37pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models “minimal” since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow regions of their parameter spaces.  
  Address [Cepedello, Ricardo; Hirsch, Martin; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000565216600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4522  
Permanent link to this record
 

 
Author Bernal, N.; Donini, A.; Folgado, M.G.; Rius, N. url  doi
openurl 
  Title Kaluza-Klein FIMP dark matter in warped extra-dimensions Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 142 - 31pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract We study for the first time the case in which Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the standard model particles in an extra-dimensional Randall-Sundrum scenario. We assume that both the dark matter and the standard model are localized in the IR-brane and only interact via gravitational mediators, namely the graviton, the Kaluza-Klein gravitons and the radion. We found that in the early Universe DM could be generated via two main processes: the direct freeze-in and the sequential freeze-in. The regions where the observed DM relic abundance is produced are largely compatible with cosmological and collider bounds.  
  Address [Bernal, Nicolas] Univ Antonio Narino, Ctr Invest, Carrera 3 Este 47A-15, Bogota, Colombia, Email: nicolas.bernal@uan.edu.co;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000574609100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4552  
Permanent link to this record
 

 
Author Escribano, P.; Reig, M.; Vicente, A. url  doi
openurl 
  Title Generalizing the Scotogenic model Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 097 - 25pp  
  Keywords Beyond Standard Model; Neutrino Physics; Renormalization Group  
  Abstract The Scotogenic model is an economical setup that induces Majorana neutrino masses at the 1-loop level and includes a dark matter candidate. We discuss a generalization of the original Scotogenic model with arbitrary numbers of generations of singlet fermion and inert doublet scalar fields. First, the full form of the light neutrino mass matrix is presented, with some comments on its derivation and with special attention to some particular cases. The behavior of the theory at high energies is explored by solving the Renormalization Group Equations.  
  Address [Escribano, Pablo; Reig, Mario; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pablo.escribano@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000553119900003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4477  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva