|   | 
Details
   web
Records
Author NEXT Collaboration (Adams, C. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 164 - 24pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 nu beta beta) decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0 nu beta beta decay better than 10(27) years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000694208600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4967
Permanent link to this record
 

 
Author Melcon, A.A.; Cuendis, S.A.; Cogollos, C.; Diaz-Morcillo, A.; Dobrich, B.; Gallego, J.D.; Barcelo, J.M.G.; Gimeno, B.; Golm, J.; Irastorza, I.G.; Lozano-Guerrero, A.J.; Malbrunot, C.; Millar, A.; Navarro, P.; Garay, C.P.; Redondo, J.; Wuensch, W.
Title Scalable haloscopes for axion dark matter detection in the 30 μeV range with RADES Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 084 - 28pp
Keywords Dark matter; Dark Matter and Double Beta Decay (experiments)
Abstract RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30 μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.
Address [Alvarez Melcon, A.; Diaz-Morcillo, A.; Garcia Barcelo, J. M.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Murcia 30203, Spain, Email: alejandro.alvarez@upct.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000553158400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4478
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Search for dark matter towards the Galactic Centre with 11 years of ANTARES data Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 805 Issue Pages 135439 - 6pp
Keywords Dark matter indirect detection; Neutrino telescope; Galactic Centre; ANTARES
Abstract Neutrino detectors participate in the indirect search for the fundamental constituents of dark matter (DM) in form of weakly interacting massive particles (WIMPs). In WIMP scenarios, candidate DM particles can pair-annihilate into Standard Model products, yielding considerable fluxes of high-energy neutrinos. A detector like ANTARES, located in the Northern Hemisphere, is able to perform a complementary search looking towards the Galactic Centre, where a high density of dark matter is thought to accumulate. Both this directional information and the spectral features of annihilating DM pairs are entered into an unbinned likelihood method to scan the data set in search for DM-like signals in ANTARES data. Results obtained upon unblinding 3170 days of data reconstructed with updated methods are presented, which provides a larger, and more accurate, data set than a previously published result using 2101 days. A non-observation of dark matter is converted into limits on the velocity-averaged cross section for WIMP pair annihilation.
Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: srgozzini@km3net.de
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000541379800026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4439
Permanent link to this record
 

 
Author Khosa, C.K.; Mars, L.; Richards, J.; Sanz, V.
Title Convolutional neural networks for direct detection of dark matter Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 9 Pages 095201 - 20pp
Keywords dark matter; dark matter detection; neural networks; xenon1T; WIMPs
Abstract The XENON1T experiment uses a time projection chamber (TPC) with liquid xenon to search for weakly interacting massive particles (WIMPs), a proposed dark matter particle, via direct detection. As this experiment relies on capturing rare events, the focus is on achieving a high recall of WIMP events. Hence the ability to distinguish between WIMP and the background is extremely important. To accomplish this, we suggest using convolutional neural networks (CNNs); a machine learning procedure mainly used in image recognition tasks. To explore this technique we use XENON collaboration open-source software to simulate the TPC graphical output of dark matter signals and main backgrounds. A CNN turns out to be a suitable tool for this purpose, as it can identify features in the images that differentiate the two types of events without the need to manipulate or remove data in order to focus on a particular region of the detector. We find that the CNN can distinguish between the dominant background events (ER) and 500 GeV WIMP events with a recall of 93.4%, precision of 81.2% and an accuracy of 87.2%.
Address [Khosa, Charanjit K.; Mars, Lucy; Richards, Joel; Sanz, Veronica] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England, Email: charanjit.kaur@sussex.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000555607800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4485
Permanent link to this record
 

 
Author Caputo, A.; Regis, M.; Taoso, M.
Title Searching for sterile neutrino with X-ray intensity mapping Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 001 - 21pp
Keywords X-ray telescopes; dark matter experiments; dark matter theory; power spectrum
Abstract The cosmological X-ray emission associated to the possible radiative decay of sterile neutrinos is composed by a collection of lines at different energies. For a given mass, each line corresponds to a given redshift. In this work, we cross correlate such line emission with catalogs of galaxies tracing the dark matter distribution at different redshifts. We derive observational prospects by correlating the X-ray sky that will be probed by the eROSITA and Athena missions with current and near future photometric and spectroscopic galaxy surveys. A relevant and unexplored fraction of the parameter space of sterile neutrinos can be probed by this technique.
Address [Caputo, Andrea] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000528029100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4385
Permanent link to this record
 

 
Author Caputo, A.; Esposito, A.; Geoffray, E.; Polosa, A.D.; Sun, S.C.
Title Dark matter, dark photon and superfluid He-4 from effective field theory Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 802 Issue Pages 135258 - 6pp
Keywords Light dark matter; Effective theory; Helium; Phonon; Dark photon
Abstract We consider a model of sub-GeV dark matter whose interaction with the Standard Model is mediated by a new vector boson (the dark photon) which couples kinetically to the photon. We describe the possibility of constraining such a model using a superfluid He-4 detector, by means of an effective theory for the description of the superfluid phonon. We find that such a detector could provide bounds that are competitive with other direct detection experiments only for ultralight vector mediator, in agreement with previous studies. As a byproduct we also present, for the first time, the low-energy effective field theory for the interaction between photons and phonons.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: angelo.esposito@epfl.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000515091400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4349
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S.
Title Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions Type Journal Article
Year 2020 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 30 Issue Pages 100666 - 12pp
Keywords Hubble tension; Cosmological parameters; Dark matter; Dark energy; Interacting dark energy
Abstract We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H-0 from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces the H-0 tension to a level which could possibly be compatible with a statistical fluctuation. The very same model also significantly reduces the Omega(m) – sigma(8) tension between CMB and cosmic shear measurements. Interactions between the dark sectors of our Universe remain therefore a promising joint solution to these persisting cosmological tensions.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000595300400037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4646
Permanent link to this record
 

 
Author Blanco, C.; Escudero, M.; Hooper, D.; Witte, S.J.
Title Z ' mediated WIMPs: dead, dying, or soon to be detected? Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 024 - 48pp
Keywords dark matter theory; dark matter detectors; dark matter experiments
Abstract Although weakly interacting massive particles (WIMPs) have long been among the most studied and theoretically attractive classes of candidates for the dark matter of our universe, the lack of their detection in direct detection and collider experiments has begun to dampen enthusiasm for this paradigm. In this study, we set out to appraise the status of the WIMP paradigm, focusing on the case of dark matter candidates that interact with the Standard Model through a new gauge boson. After considering a wide range of Z' mediated dark matter models, we quantitatively evaluate the fraction of the parameter space that has been excluded by existing experiments, and that is projected to fall within the reach of future direct detection experiments. Despite the existence of stringent constraints, we find that a sizable fraction of this parameter space remains viable. More specifically, if the dark matter is a Majorana fermion, we find that an order one fraction of the parameter space is in many cases untested by current experiments. Future direct detection experiments with sensitivity near the irreducible neutrino floor will be able to test a significant fraction of the currently viable parameter space, providing considerable motivation for the next generation of direct detection experiments.
Address [Blanco, Carlos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA, Email: carlosblanco2718@uchicago.ed;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000507259700021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4255
Permanent link to this record
 

 
Author NEXT Collaboration (Fernandes, A.F.M. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 034 - 18pp
Keywords Particle correlations and fluctuations; Photon production; Dark Matter and Double Beta Decay (experiments); Rare decay
Abstract High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe-He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by similar to 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: cristinam@uc.pt
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000525257400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4366
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Palmeiro, B.; Sorel, M.; Uson, A.; Alvarez, V; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Yahlali, N.
Title Radiogenic backgrounds in the NEXT double beta decay experiment Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 051 - 26pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of Co-60, K-40, Bi-214 and Tl-208 to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25 +/- 0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5 sigma after 1 year of data taking. The background measurement in a Q(beta beta)+/- 100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75 +/- 0.12) events.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: pau.novella@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000491469000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4183
Permanent link to this record