toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Alioli, S.; Fuster, J.; Garzelli, M.V.; Gavardi, A.; Irles, A.; Melini, D.; Moch, S.O.; Uwer, P.; Voss, K. url  doi
openurl 
  Title Phenomenology of t(t)over-barj plus X production at the LHC Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 146 - 63pp  
  Keywords Specific QCD Phenomenology; Top Quark  
  Abstract We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.  
  Address [Alioli, Simone; Gavardi, Alessandro] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Bicocca, Italy, Email: simone.alioli@unimib.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000801110800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5236  
Permanent link to this record
 

 
Author Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. . url  doi
openurl 
  Title Synergy between cosmological and laboratory searches in neutrino physics Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 42 Issue Pages 101333 - 36pp  
  Keywords Neutrinos; Cosmology; Neutrino phenomenology  
  Abstract The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories.  
  Address [Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001112368600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5854  
Permanent link to this record
 

 
Author Pich, A.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title Violations of quark-hadron duality in low-energy determinations of alpha(s) Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 145 - 42pp  
  Keywords The Strong Coupling; Semi-Leptonic Decays; Specific QCD Phenomenology; Chiral Lagrangian  
  Abstract Using the spectral functions measured in tau decays, we investigate the actual numerical impact of duality violations on the extraction of the strong coupling. These effects are tiny in the standard alpha(s)(m(tau)(2)) determinations from integrated distributions of the hadronic spectrum with pinched weights, or from the total tau hadronic width. The pinched-weight factors suppress very efficiently the violations of duality, making their numerical effects negligible in comparison with the larger perturbative uncertainties. However, combined fits of alpha(s) and duality-violation parameters, performed with non-protected weights, are subject to large systematic errors associated with the assumed modelling of duality-violation effects. These uncertainties have not been taken into account in the published analyses, based on specific models of quark-hadron duality.  
  Address [Pich, Antonio] Univ Valencia, Dept Fis Teor, CSIC, IFIC, Parque Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Antonio.Pich@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000831256400009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5303  
Permanent link to this record
 

 
Author Caron, S.; Ruiz de Austri, R.; Zhang, Z.Y. url  doi
openurl 
  Title Mixture-of-Theories training: can we find new physics and anomalies better by mixing physical theories? Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 004 - 37pp  
  Keywords Specific BSM Phenomenology; Supersymmetry  
  Abstract Model-independent search strategies have been increasingly proposed in recent years because on the one hand there has been no clear signal for new physics and on the other hand there is a lack of a highly probable and parameter-free extension of the standard model. For these reasons, there is no simple search target so far. In this work, we try to take a new direction and ask the question: bearing in mind that we have a large number of new physics theories that go beyond the Standard Model and may contain a grain of truth, can we improve our search strategy for unknown signals by using them “in combination”? In particular, we show that a signal hypothesis based on a large, intermingled set of many different theoretical signal models can be a superior approach to find an unknown BSM signal. Applied to a recent data challenge, we show that “mixture-of-theories training” outperforms strategies that optimize signal regions with a single BSM model as well as most unsupervised strategies. Applications of this work include anomaly detection and the definition of signal regions in the search for signals of new physics.  
  Address [Caron, Sascha; Zhang, Zhongyi] Radboud Univ Nijmegen, High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000943095100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5494  
Permanent link to this record
 

 
Author Alvarez, M.; Cantero, J.; Czakon, M.; Llorente, J.; Mitov, A.; Poncelet, R. url  doi
openurl 
  Title NNLO QCD corrections to event shapes at the LHC Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 129 - 24pp  
  Keywords Higher-Order Perturbative Calculations; Specific QCD Phenomenology  
  Abstract In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.  
  Address [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany, Email: manuel.alvarez.estevez@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000992064600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5560  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva