toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Hirn, J.; Garcia, J.E.; Montesinos-Navarro, A.; Sanchez-Martin, R.; Sanz, V.; Verdu, M. url  doi
openurl 
  Title A deep Generative Artificial Intelligence system to predict species coexistence patterns Type Journal Article
  Year 2022 Publication Methods in Ecology and Evolution Abbreviated Journal Methods Ecol. Evol.  
  Volume 13 Issue Pages 1052-1061  
  Keywords artificial intelligence; direct interactions; generative adversarial networks; indirect interactions; species coexistence; variational AutoEncoders  
  Abstract Predicting coexistence patterns is a current challenge to understand diversity maintenance, especially in rich communities where these patterns' complexity is magnified through indirect interactions that prevent their approximation with classical experimental approaches. We explore cutting-edge Machine Learning techniques called Generative Artificial Intelligence (GenAI) to predict species coexistence patterns in vegetation patches, training generative adversarial networks (GAN) and variational AutoEncoders (VAE) that are then used to unravel some of the mechanisms behind community assemblage. The GAN accurately reproduces real patches' species composition and plant species' affinity to different soil types, and the VAE also reaches a high level of accuracy, above 99%. Using the artificially generated patches, we found that high-order interactions tend to suppress the positive effects of low-order interactions. Finally, by reconstructing successional trajectories, we could identify the pioneer species with larger potential to generate a high diversity of distinct patches in terms of species composition. Understanding the complexity of species coexistence patterns in diverse ecological communities requires new approaches beyond heuristic rules. Generative Artificial Intelligence can be a powerful tool to this end as it allows to overcome the inherent dimensionality of this challenge.  
  Address [Hirn, Johannes; Enrique Garcia, Jose; Sanz, Veronica] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: miguel.verdu@ext.uv.es  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-210x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000765239700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5155  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Study of coherent J/psi production in lead-lead collisions at root S-NN=5 TeV Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 117 - 19pp  
  Keywords Heavy Ion Experiments; Particle and Resonance Production; QCD; Quarkonium; Relativistic Heavy Ion Physics  
  Abstract Coherent production of J/psi mesons is studied in ultraperipheral lead-lead collisions at a nucleon-nucleon centre-of-mass energy of 5 TeV, using a data sample collected by the LHCb experiment corresponding to an integrated luminosity of about 10 μb(-1). The J/psi mesons are reconstructed in the dimuon final state and are required to have transverse momentum below 1 GeV. The cross-section within the rapidity range of 2.0 < y < 4.5 is measured to be 4.45 +/- 0.24 +/- 0.18 +/- 0.58 mb, where the first uncertainty is statistical, the second systematic and the third originates from the luminosity determination. The cross-section is also measured in J/psi rapidity intervals. The results are compared to predictions from phenomenological models.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: albert.frithjof.bursche@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000829159300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5309  
Permanent link to this record
 

 
Author Gola, S.; Mandal, S.; Sinha, N. url  doi
openurl 
  Title ALP-portal majorana dark matter Type Journal Article
  Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 37 Issue Pages 2250131 - 14pp  
  Keywords Axion like particle; heavy neutrinos; dark matter  
  Abstract Axion like particles (ALPs) and right-handed neutrinos (RHNs) are two well-motivated dark matter (DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM (Majorana DM) taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and Standard Model (SM) particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.  
  Address [Gola, Shivam; Sinha, Nita] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India, Email: shivamg@imsc.res.in;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000854297000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5359  
Permanent link to this record
 

 
Author Borsato, M. et al; Zurita, J.; Henry, L.; Jashal, B.K.; Oyanguren, A. url  doi
openurl 
  Title Unleashing the full power of LHCb to probe stealth new physics Type Journal Article
  Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 85 Issue 2 Pages 024201 - 45pp  
  Keywords LHCb; stealth physics; BSM physics; hidden sectors; long-lived particles; dark matter  
  Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.  
  Address [Borsato, M.] Heidelberg Univ, Phys Inst, Heidelberg, Germany, Email: xabier.cid.vidal@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762056700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5151  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Search for the doubly charmed baryon Omega(+)(cc) Type Journal Article
  Year 2021 Publication Science China-Physics Mechanics & Astronomy Abbreviated Journal Sci. China-Phys. Mech. Astron.  
  Volume 64 Issue 10 Pages 101062 - 12pp  
  Keywords charmed baryons; limits on production of particles; charmed quarks; experimental tests  
  Abstract A search for the doubly charmed baryon Omega(+)(cc) with the decay mode Omega(+)(cc) -> Xi K-+(c)-pi(+) is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment from 2016 to 2018, corresponding to an integrated luminosity of 5.4 fb(-1). No significant signal is observed within the invariant mass range of 3.6 to 4.0GeV/c(2). Upper limits are set on the ratio R of the production cross-section times the total branching fraction of the Omega(+)(cc) -> Xi K-+(c)-pi(+) decay with respect to the Xi(++)(cc) -> Lambda K-+(c)-pi(+)pi(+) decay. Upper limits at 95% credibility level for R in the range 0.005 to 0.11 are obtained for different hypotheses on the Omega(+)(cc) mass and lifetime in the rapidity range from 2.0 to 4.5 and transverse momentum range from 4 to 15 GeV/c.  
  Address [Baptista Leite, J.; Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Science Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-7348 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000694853300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4971  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva