|   | 
Details
   web
Records
Author Khosa, C.K.; Sanz, V.; Soughton, M.
Title Using machine learning to disentangle LHC signatures of Dark Matter candidates Type Journal Article
Year 2021 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 10 Issue 6 Pages 151 - 26pp
Keywords
Abstract We study the prospects of characterising Dark Matter at colliders using Machine Learning (ML) techniques. We focus on the monojet and missing transverse energy (MET) channel and propose a set of benchmark models for the study: a typical WIMP Dark Matter candidate in the form of a SUSY neutralino, a pseudo-Goldstone impostor in the shape of an Axion-Like Particle, and a light Dark Matter impostor whose interactions are mediated by a heavy particle. All these benchmarks are tensioned against each other, and against the main SM background (Z+jets). Our analysis uses both the leading-order kinematic features as well as the information of an additional hard jet. We explore different representations of the data, from a simple event data sample with values of kinematic variables fed into a Logistic Regression algorithm or a Fully Connected Neural Network, to a transformation of the data into images related to probability distributions, fed to Deep and Convolutional Neural Networks. We also study the robustness of our method against including detector effects, dropping kinematic variables, or changing the number of events per image. In the case of signals with more combinatorial possibilities (events with more than one hard jet), the most crucial data features are selected by performing a Principal Component Analysis. We compare the performance of all these methods, and find that using the 2D images of the combined information of multiple events significantly improves the discrimination performance.
Address [Khosa, Charanjit Kaur; Sanz, Veronica; Soughton, Michael] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England, Email: Charanjit.Kaur@sussex.ac.uk;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000680038800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4927
Permanent link to this record
 

 
Author Bombacigno, F.; Boudet, S.; Montani, G.
Title Generalized Ashtekar variables for Palatini f(R) models Type Journal Article
Year 2021 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 963 Issue Pages 115281 - 21pp
Keywords
Abstract We consider special classes of Palatini f(R) theories, featured by additional Loop Quantum Gravity inspired terms, with the aim of identifying a set of modified Ashtekar canonical variables, which still preserve the SU(2) gauge structure of the standard theory. In particular, we allow for affine connection to be endowed with torsion, which turns out to depend on the additional scalar degree affecting Palatini f( R) gravity, and in this respect we successfully construct a novel Gauss constraint. We analyze the role of the additional scalar field, outlining as it acquires a dynamical character by virtue of a non vanishing Immirzi parameter, and we describe some possible effects on the area operator stemming from such a revised theoretical framework. Finally, we compare our results with earlier studies in literature, discussing differences between metric and Palatini approaches. It is worth noting how the Hamiltonian turns out to be different in the two cases. The results can be reconciled when the analysis is performed in the Einstein frame.
Address [Bombacigno, Flavio] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: flavio.bombacigno@ext.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000613579500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4706
Permanent link to this record
 

 
Author Delhom, A.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J.
Title Metric-affine bumblebee gravity: classical aspects Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 4 Pages 287 - 10pp
Keywords
Abstract We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the post-Minkowskian, weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric, and then we explore the physical properties of the VEV of the bumblebee field, focusing mainly on the dispersion relations and the stability of the resulting effective theory.
Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia, CSIC, Valencia 46100, Spain, Email: adria.delhom@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000636839400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4779
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Measurement of the relative B-c(+/-)/B-+/- production cross section with the ATLAS detector at root s=8 TeV Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 1 Pages 012010 - 26pp
Keywords
Abstract The total cross section and differential cross sections for the production of B-c(+/-) mesons, times their branching fraction to J/psi pi(+/-), are measured relative to those for the production of B-+/- mesons, times their branching fraction to J/psi K-+/-. The data used for this study correspond to an integrated luminosity of 20.3 fb(-1) of pp collisions recorded by the ATLAS detector at the Large Hadron Collider in 2012 at a center-of-mass energy of root s = 8 TeV. The measurement is performed differentially in bins of transverse momentum p(T) for 13 GeV < p(T)(B-c(+/-)) < 22 GeV and p(T)(B-c(+/-)) > 22 GeV and in bins of rapidity y for vertical bar y vertical bar < 0.75 and 0.75 < vertical bar y vertical bar < 2.3. The relative cross section times branching fraction for the full range p(T) > 13 GeV and vertical bar y vertical bar < 2.3 is (0.34 +/- 0.04(stat) (+0.06)(-0.02 sys) +/- 0.01(lifetime))%. The differential measurements suggest that the production cross section of the B-c(+/-) decreases faster with p(T) than the production cross section of the B-+/-, while no significant dependence on rapidity is observed.
Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000679144000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4925
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P.
Title Strong decays of the lowest bottomonium hybrid within an extended Born-Oppenheimer framework Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 1 Pages 74 - 9pp
Keywords
Abstract We analyze the decays of the theoretically predicted lowest bottomonium hybrid H(1P) to open bottom two-meson states. We do it by embedding a quark pair creation model into the Born-Oppenheimer framework which allows for a unified, QCD-motivated description of bottomonium hybrids as well as bottomonium. A new 1P1 decay model for H(1P) comes out. The same analysis applied to bottomonium leads naturally to the well-known 3 P0 decay model. We show that H(1P) and the theoretically predicted bottomonium state Upsilon (5S), whose calculated masses are close to each other, have very different widths for such decays. A comparison with data from Upsilon (10860), an experimental resonance whose mass is similar to that of Upsilon (5S) and H(1P), is carried out. Neither a Upsilon (5S) nor a H(1P) assignment can explain the measured decay widths. However, a Upsilon (5S)-H(1P) mixing may give account of them supporting previous analyses of dipion decays of Upsilon (10860) and suggesting a possible experimental evidence of H(1P).
Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular, Unidad Teor, Valencia 46980, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000612840500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4695
Permanent link to this record