Lessa, L. A., & Olmo, G. J. (2025). On the structure of black bounces sourced by anisotropic fluids. J. Cosmol. Astropart. Phys., 03(3), 019–18pp.
Abstract: The field equations of static, spherically symmetric geometries generated by anisotropic fluids is investigated with the aim of better understanding the relation between the matter and the emergence of minimal area throats, like in wormhole and black bounce scenarios. Imposing some simplifying restrictions on the matter, which amounts to considering nonlinear electromagnetic sources, we find analytical expressions that allow one to design the type of sought geometries. We illustrate our analysis with several examples, including an asymmetric, bounded black bounce spacetime which reproduces the standard ReissnerNordstr & ouml;m geometry on the outside all the way down to the throat.
|
Grinstein, B., Lu, X. C., Miro, C., & Quilez, P. (2025). Accidental symmetries, Hilbert series, and friends. J. High Energy Phys., 03(3), 172–86pp.
Abstract: Accidental symmetries in effective field theories can be established by computing and comparing Hilbert series. This invites us to study them with the tools of invariant theory. Applying this technology, we spotlight three classes of accidental symmetries that hold to all orders for non-derivative interactions. They are broken by derivative interactions and become ordinary finite-order accidental symmetries. To systematically understand the origin and the patterns of accidental symmetries, we introduce a novel mathematical construct – a (non-transitive) binary relation between subgroups that we call friendship. Equipped with this, we derive new criteria for all-order accidental symmetries in terms of friends, and criteria for finite-order accidental symmetries in terms of friends ma non troppo. They allow us to verify and identify accidental symmetries more efficiently without computing the Hilbert series. We demonstrate the success of our new criteria by applying them to a variety of sample accidental symmetries, including the custodial symmetry in the Higgs sector of the Standard Model effective field theory.
|
Singha, M., Yokoyama, R., Grzywacz, R., Keeler, A., King, T. T., Agramunt, J., et al. (2025). YSO implantation detector for beta-delayed neutron spectroscopy. Nucl. Instrum. Methods Phys. Res. A, 1073, 170239–14pp.
Abstract: A segmented-scintillator-based implantation detector was developed to study the energy distribution of /1- delayed neutrons emitted from exotic isotopes. The detector comprises a 34 x 34 YSO scintillator coupled to an 8 x 8 anode Position-Sensitive Photo-Multiplier Tube (PSPMT) via a tapered light guide. The detector was used at RIBF, RIKEN for time-of-flight-based neutron spectroscopy measurement in the 78Ni region. The detector provides the position and timing resolution necessary for ion-beta correlations and time of flight measurements. The detector provides a high similar to 80% beta-detection efficiency and a sub-nanosecond timing resolution. This contribution discusses the details of the design, operation, implementation, and analysis developed to obtain neutron time-of-flight spectrum and the analysis methods in the context of neutron-rich nuclei in the 78Ni region.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Measurement of off-shell Higgs boson production in the H*→ZZ→4l decay channel using a neural simulation-based inference technique in 13 TeV pp collisions with the ATLAS detector. Rep. Prog. Phys., 88(5), 057803–38pp.
Abstract: A measurement of off-shell Higgs boson production in the H*-> ZZ -> 4l decay channel is presented. The measurement uses 140 fb-1 of proton-proton collisions at s=13 TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the ZZ -> 4l decay channel at 68% CL is 0.87-0.54+0.75 ( 1.00-0.95+1.04). The evidence for off-shell Higgs boson production using the ZZ -> 4l decay channel has an observed (expected) significance of 2.5 sigma (1.3 sigma). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of 0.5 sigma. When combined with the most recent ATLAS measurement in the ZZ -> 2l2 nu decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7 sigma (2.4 sigma). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is 4.3-1.9+2.7 ( 4.1-3.4+3.5) MeV.
|
LHCb Collaboration(Aaij, R. et al), Fernandez Casani, A., Jaimes Elles, S. J., Jashal, B. K., Libralon, S., Martinez-Vidal, F., et al. (2025). Observation of the Open-Charm Tetraquark Candidate Tcs0* (2870)0 in the B- → D- D0KS0 Decay. Phys. Rev. Lett., 134(10), 101901–13pp.
Abstract: An amplitude analysis of B- -> D- (DKS0)-K-0 decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 9 fb(-1), collected with the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV. A resonant structure of spin-parity 0(+) is observed in the (DKS0)-K-0 invariant-mass spectrum with a significance of 5.3s. The mass and width of the state, modeled with a Breit-Wigner line shape, are determined to be 2883 +/- 11 +/- 8 MeV/c(2) and 87(-47)(+22) +/- 17 MeV, respectively, where the first uncertainties are statistical and the second systematic. These properties and the quark content are consistent with those of the open-charm tetraquark candidate T-cs0(*)(2870)(0) observed previously in the D+K- final state of the B- -> D-D+K- decay. This result confirms the existence of the T-cs0(*)(2870)(0) state in a new decay mode. The T-c10(*) (2900)(0) state, reported in the B- -> D-D+K- decay, is also searched for in the (DKS0)-K-0 invariant-mass spectrum of the B- -> D- (DKS0)-K-0 decay, without finding evidence for it.
|
Gao, F., Miramontes, A. S., Papavassiliou, J., & Pawlowski, J. M. (2025). Heavy-light mesons from a flavour-dependent interaction. Phys. Lett. B, 863, 139384–8pp.
Abstract: We introduce a new framework for the physics of heavy-light mesons, whose key element is the effective incorporation of flavour-dependent contributions into the corresponding bound-state and quark gap equations. These terms originate from the fully-dressed quark-gluon vertices appearing in the kernels of these equations, and provide a natural distinction between “light” and “heavy” quarks. In this approach, only the classical form factor of the quark-gluon vertex is retained, and is evaluated in the so-called “symmetric” configuration. The standard Slavnov-Taylor identity links this form factor to the quark wave-function, allowing for the continuous transition from light to heavy quarks through the mere variation of the current quark mass in the gap equation. The method is used to compute the masses and decay constants of specific pseudoscalars and vector heavy-light systems, showing good overall agreement with both experimental data and lattice simulations.
|
Bruschini, R., Gonzalez, P., & Tarutina, T. (2025). 3P0 model revisited. Phys. Rev. D, 111(7), 074042–8pp.
Abstract: We revisit the phenomenological 3P0 model for the decay of quarkonium (QQ<overline>) into two open flavor mesons ( 1R<overline>1R). We take the heavy-quark limit and derive a transition rate between Q Q<overline> and 1R<overline>1R to be compared with the one calculated in studies of string breaking using lattice QCD. This comparison allows us to fit the creation amplitude of a light quark-antiquark pair in the 3P0 model to the string-breaking transition rate in QCD.
|
n_TOF Collaboration(Balibrea-Correa, J. et al), Lerendegui-Marco, J., Domingo-Pardo, C., Ladarescu, I., Tarifeño-Saldivia, A., de la Fuente-Rosales, G., et al. (2025). Towards a new generation of solid total-energy detectors for neutron-capture time-of-flight experiments with intense neutron beams. Nucl. Instrum. Methods Phys. Res. A, 1072, 170110–14pp.
Abstract: Challenging neutron-capture cross-section measurements of small cross sections and samples with a very limited number of atoms require high-flux time-of-flight facilities. In turn, such facilities need innovative detection setups that are fast, have low sensitivity to neutrons, can quickly recover from the so-called. gamma-flash, and offer the highest possible detection sensitivity. In this paper, we present several steps towards such advanced systems. Specifically, we describe the performance of a high-sensitivity experimental setupat CERN n_TOF EAR2. It consists of nine sTED detector modules in a compact cylindrical configuration, two conventional used large-volume C6D6 detectors, and one LaCl3(Ce) detector. The performance of these detection systems is compared using Nb-93(n, gamma) data. We also developed a detailed GEANT4 Monte Carlo model of the experimental EAR2 setup, which allows for a better understanding of the detector features, including their efficiency determination. This Monte Carlo model has been used for further optimization, thus leading to a new conceptual design of a gamma detector array, STAR, based on a deuterated-stilbene crystal array. Finally, the suitability of deuterated-stilbene crystals for the future STAR array is investigated experimentally utilizing a small stilbene-d12 prototype. The results suggest a similar or superior performance of STAR with respect to other setups based on liquid-scintillators, and allow for additional features such as neutron-gamma discrimination and a higher level of customization capability.
|
Zhai, Q. Y., Molina, R., Oset, E., & Geng, L. S. (2025). Study of the exotic three-body ND*Kbar* system. Phys. Rev. D, 111(3), 034039–6pp.
Abstract: We have studied the ND*K<overline>* system in the framework of the fixed center approximation to the Faddeev equations, taking the exotic D*K<overline>* system as the cluster and allowing the N to interact with the components of the cluster. Previous studies have determined the existence of three states of spin 0, 1, 2 for the D*K<overline>* system, the one of spin 0 associated to the X0(2900) state observed by the LHCb Collaboration. From this perspective, we find five states with total spin 1/2, 3/2, 5/2, with bindings from 10 to 30 MeV and widths below 60 MeV, which could be well identified. We also discuss the decay channels of these states that should help in future experimental searches for these states.
|
Li, H. P., Liang, W. H., Xiao, C. W., Xie, J. J., & Oset, E. (2025). Determination of the binding and DK probability of the Ds0*(2317) from the (DK)- mass distributions in Λb→Λ(DK)- decays. Eur. Phys. J. C, 85(6), 616–9pp.
Abstract: We study the Lambda b ->Lambda cD0K- and Lambda b ->Lambda cD-K0 decays which proceed via a Cabibbo and Nc favored process of external emission, and we determine the D0K- and D-K0 mass distributions close to the DK threshold. For this, we use the tree level contribution plus the rescattering of the meson-meson components, using the extension of the local hidden gauge approach to the charm sector that produces the Ds0*(2317) resonance. We observe a large enhancement of the mass distributions close to threshold due to the presence of this resonance below threshold. Next we undertake the inverse problem of extracting the maximum information on the interaction of the DK channels from these distributions, and using the resampling method we find that from these data one can obtain precise values of the scattering lengths and effective ranges, the existence of an I=0 bound state with a precision of about 4MeV in the mass, plus the DK molecular probability of this state with reasonable precision. Given the fact that the Lambda b ->Lambda cD0K- decay is already measured by the LHCb collaboration, it is expected that in the next runs with more statistics of the decay, these mass distributions can be measured with precision and the method proposed here can be used to determine the nature of the Ds0*(2317), which is still an issue of debate.
|