|   | 
Details
   web
Records
Author Escrig, S. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.
Title First test of energy response of the micro-vertex detection system for the WASA-FRS Experiments Type Journal Article
Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169392 - 4pp
Keywords Micro-strip silicon sensor; Tracking detector; Micro-vertex detector
Abstract The hypernuclei, which are nuclei that contain the quark s, have been studied for more than 50 years. Notwithstanding, the recent experiments using high-energy heavy-ion induced reactions have challenged their current understanding. The high multiplicity of particles generated in the reaction allows for the measurement of the interaction point of the primary beam with the target. Then, a micro-vertex detection system for the WASA-FRS Experiments has been developed. Several experimental tests have been performed with Sr-90 and Bi-207 beta sources and a 10-MeV proton beam at the CMAM tandem accelerator, and their results are reported.
Address [Escrig, S.; Rappold, C.; Ruiz, D. Fernandez; Borge, M. J. Garcia; Tavora, V. Garcia; Aguirre, A. Nerio; Martinez, A. Perea; Sanchez-Prieto, J.; Tengblad, O.] CSIC, IEM, Madrid 28006, Spain, Email: samuel.escrig@csic.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001301017700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6242
Permanent link to this record
 

 
Author Latonova, V. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1050 Issue Pages 168119 - 5pp
Keywords HL-LHC; ATLAS ITk; Silicon micro-strip sensor; Polysilicon bias resistor; Testchip
Abstract The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.
Address [Latonova, V.; Federicova, P.; Kroll, J.; Kvasnicka, J.; Mikestikova, M.] Acad Sci Czech Republ, Inst Phys, Slovance 2, Prague 8, Czech Republic, Email: vera.latonova@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001035405300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5601
Permanent link to this record
 

 
Author Helling, C. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.
Title Strip sensor performance in prototype modules built for ATLAS ITk Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 978 Issue Pages 164402 - 6pp
Keywords Silicon strip sensors; Strip module; Inter-strip isolation; Readout noise
Abstract ATLAS experiment is preparing an upgrade of its detector for High-Luminosity LHC (HL-LHC) operation. The upgrade involves installation of the new all-silicon Inner Tracker (ITk). In the context of the ITk preparations, more than 80 strip modules were built with prototype barrel sensors. They were tested with electrical readout on a per-channel basis. In general, an excellent performance was observed, consistent with previous ASIC-level and sensor-level tests. However, the lessons learned included two phenomena important for the future phases of the project. First was the need to store and test the modules in a dry environment due to humidity sensitivity of the sensors. The second was an observation of high noise regions for 2 modules. The high noise regions were tested further in several ways, including monitoring the performance as a function of time and bias voltage. Additionally, direct sensor-level tests were performed on the affected channels. The inter-strip resistance and bias resistance tests showed low values, indicating a temporary loss of the inter-strip isolation. A subsequent recovery of the noise performance was observed. We present the test details, an analysis of how the inter-strip isolation affects the module noise, and the relationship with sensor-level quality control tests.
Address [Helling, C.; Affolder, A. A.; Fadeyev, V.; Galloway, Z.; Gignac, M.; Gunnell, J.; Martinez-Mckinney, F.; Kang, N.; Yarwick, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA, Email: fadeyev@ucsc.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000560076700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4505
Permanent link to this record
 

 
Author Benitez, V. et al; Bernabeu, J.; Garcia, C.; Lacasta, C.; Marco, R.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.
Title Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 833 Issue Pages 226-232
Keywords Silicon radiation detectors; Strip sensors; HL-LHC; ATLAS Upgrade; Inner Tracker (ITk); End-cap
Abstract The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-In stereo angle. In order to investigate these specific problems, the “petalet” prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITIc strip, community acquiring the necessary expertise to develop the full End-cap structure, the petal.
Address [Benitez, V.; Ullan, M.; Quirion, D.; Pellegrini, G.; Fleta, C.; Lozano, M.] CSIC, CNM, IMB, Campus Univ Bellaterra, Barcelona 08193, Spain, Email: miguel.ullan@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000383818200032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2816
Permanent link to this record