Wuensch, W., Degiovanni, A., Calatroni, S., Korsback, A., Djurabekova, F., Rajamaki, R., et al. (2017). Statistics of vacuum breakdown in the high-gradient and low-rate regime. Phys. Rev. Accel. Beams, 20(1), 011007–11pp.
Abstract: In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DCto 12GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.
|
Degiovanni, A., Wuensch, W., & Giner Navarro, J. (2016). Comparison of the conditioning of high gradient accelerating structures. Phys. Rev. Accel. Beams, 19(3), 032001–6pp.
Abstract: Accelerating gradients in excess of 100 MV/m, at very low breakdown rates, have been successfully achieved in numerous prototype CLIC accelerating structures. The conditioning and operational histories of several structures, tested at KEK and CERN, have been compared and there is clear evidence that the conditioning progresses with the number of rf pulses and not with the number of breakdowns. This observation opens the possibility that the optimum conditioning strategy, which minimizes the total number of breakdowns the structure is subject to without increasing conditioning time, may be to never exceed the breakdown rate target for operation. The result is also likely to have a strong impact on efforts to understand the physical mechanism underlying conditioning and may lead to preparation procedures which reduce conditioning time.
|
Fanchiotti, H., Garcia Canal, C. A., Mayosky, M., Perez, A., & Veiga, A. (2024). Quantum and classical dynamics correspondence and the brachistochrone problem. Phys. Rev. A, 110(4), 042219–8pp.
Abstract: The decomplexification procedure, which allows showing mathematically the isomorphism between classical and quantum dynamics of systems with a finite number of basis states, is exploited to propose resonant electric circuits with gyrator-based couplings and to experimentally study the quantum brachistochrone problem, particularly the passage time in Hermitian and parity-time-symmetric cases.
|
Perez, A. (2010). Information encoding of a qubit into a multilevel environment. Phys. Rev. A, 81(5), 052326–6pp.
Abstract: I consider the interaction of a small quantum system (a qubit) with a structured environment consisting of many levels. The qubit will experience a decoherence process, which implies that part of its initial information will be encoded into correlations between system and environment. I investigate how this information is distributed on a given subset of levels as a function of its size, using the mutual information between both entities, in the spirit of the partial-information plots studied by Zurek and co-workers. In this case we can observe some differences, which arise from the fact that I am partitioning just one quantum system and not a collection of them. However, some similar features, like redundancy (in the sense that a given amount of information is shared by many subsets), which increases with the size of the environment, are also found here.
|
Hinarejos, M., Di Franco, C., Romanelli, A., & Perez, A. (2014). Chirality asymptotic behavior and non-Markovianity in quantum walks on a line. Phys. Rev. A, 89(5), 052330–7pp.
Abstract: We investigate the time evolution of the chirality reduced density matrix for a discrete-time quantum walk on a one-dimensional lattice. The matrix is obtained by tracing out the spatial degree of freedom. We analyze the standard case, without decoherence, and the situation in which decoherence appears in the form of broken links in the lattice. By examining the trace distance for possible pairs of initial states as a function of time, we conclude that the evolution of the reduced density matrix is non-Markovian, in the sense defined by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)]. As the level of noise increases, the dynamics approaches a Markovian process. The highest non-Markovianity corresponds to the case without decoherence. The reduced density matrix tends always to a well-defined limit that we calculate, but only in the decoherence-free case is this limit nontrivial.
|