|   | 
Details
   web
Records
Author Otal, A.; Celada, F.; Chimeno, J.; Vijande, J.; Pellejero, S.; Perez-Calatayud, M.J.; Villafranca, E.; Fuentemilla, N.; Blazquez, F.; Rodriguez, S.; Perez-Calatayud, J.
Title Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives Type Journal Article
Year 2022 Publication Cancers Abbreviated Journal Cancers
Volume 14 Issue 14 Pages 3467 - 15pp
Keywords cervix; treatment planning systems; interstitial applicators; magnetic resonance
Abstract Simple Summary There are no brachytherapy treatment planning systems (TPS) exclusively for the treatment of cervical tumours, so general-purpose TPSs are used. However, these treatments have some particular features concerning the treatment of other pathologies, especially in the case of exclusive use of MRI as an imaging modality and the presence of gynaecological applicators in combination with an interstitial part. That is why it is essential to review the latest versions of commercial TPSs to find the potential features to improve with the help of a group of experimented medical physicists and radiation oncologists. Furthermore, after reviewing the recent literature for advances applicable to cervical brachytherapy and through his own clinical experience, possible improvements are proposed to software providers for the development of new tools. Intracavitary brachytherapy (BT, Interventional Radiotherapy, IRT), plays an essential role in the curative intent of locally advanced cervical cancer, for which the conventional approach involves external beam radiotherapy with concurrent chemotherapy followed by BT. This work aims to review the different methodologies used by commercially available treatment planning systems (TPSs) in exclusive magnetic resonance imaging-based (MRI) cervix BT with interstitial component treatments. Practical aspects and improvements to be implemented into the TPSs are discussed. This review is based on the clinical expertise of a group of radiation oncologists and medical physicists and on interactive demos provided by the software manufacturers. The TPS versions considered include all the new tools currently in development for future commercial releases. The specialists from the supplier companies were asked to propose solutions to some of the challenges often encountered in a clinical environment through a questionnaire. The results include not only such answers but also comments by the authors that, in their opinion, could help solve the challenges covered in these questions. This study summarizes the possibilities offered nowadays by commercial TPSs, highlighting the absence of some useful tools that would notably improve the planning of MR-based interstitial component cervix brachytherapy.
Address [Otal, Antonio] Hosp Arnau Vilanova, Med Phys Dept, Lleida 25198, Spain, Email: aotalpalacin@gmail.com;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000832057600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5304
Permanent link to this record
 

 
Author Barenboim, G.
Title Some Aspects About Pushing the CPT and Lorentz Invariance Frontier With Neutrinos Type Journal Article
Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 10 Issue Pages 813753 - 7pp
Keywords CPT symmetry; neutrino properties; lorentz violation; fundamental symmetries; discrete symmetries
Abstract The CPT symmetry, which combines Charge Conjugation, Parity, and Time Reversal, is a cornerstone of our model-building method, and its probable violation will endanger the most extended tool we presently utilize to explain physics, namely local relativistic quantum fields. However, the kaon system's conservation constraints appear to be rather severe. We will show in this paper that neutrino oscillation experiments can enhance this limit by many orders of magnitude, making them an excellent instrument for investigating the basis of our understanding of Nature. As a result, verifying CPT invariance does not evaluate a specific model, but rather the entire paradigm. Therefore, as the CPT's status in the neutrino sector, linked or not to Lorentz invariance violation, will be assessed at an unprecedented level by current and future long baseline experiments, distinguishing it from comparable experimental fingerprints coming from non-standard interactions is critical. Whether the entire paradigm or simply the conventional model of neutrinos is at jeopardy is significantly dependent on this.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000804003600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5237
Permanent link to this record
 

 
Author Calefice, L.; Hennequin, A.; Henry, L.; Jashal, B.K.; Mendoza, D.; Oyanguren, A.; Sanderswood, I.; Sierra, C.V.; Zhuo, J.H.
Title Effect of the high-level trigger for detecting long-lived particles at LHCb Type Journal Article
Year 2022 Publication Frontiers in Big Data Abbreviated Journal Front. Big Data
Volume 5 Issue Pages 1008737 - 13pp
Keywords LHCb; trigger; real time analysis; long-lived particles; GPU; SciFi; beyond standard physics
Abstract Long-lived particles (LLPs) show up in many extensions of the Standard Model, but they are challenging to search for with current detectors, due to their very displaced vertices. This study evaluated the ability of the trigger algorithms used in the Large Hadron Collider beauty (LHCb) experiment to detect long-lived particles and attempted to adapt them to enhance the sensitivity of this experiment to undiscovered long-lived particles. A model with a Higgs portal to a dark sector is tested, and the sensitivity reach is discussed. In the LHCb tracking system, the farthest tracking station from the collision point is the scintillating fiber tracker, the SciFi detector. One of the challenges in the track reconstruction is to deal with the large amount of and combinatorics of hits in the LHCb detector. A dedicated algorithm has been developed to cope with the large data output. When fully implemented, this algorithm would greatly increase the available statistics for any long-lived particle search in the forward region and would additionally improve the sensitivity of analyses dealing with Standard Model particles of large lifetime, such as KS0 or Lambda (0) hadrons.
Address [Calefice, Lukas] Sorbonne Univ, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, Paris, France, Email: arantza.oyanguren@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000889005000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5423
Permanent link to this record
 

 
Author de Azcarraga, J.A.
Title The new Spanish educational legislation: why public education will not improve Type Journal Article
Year 2022 Publication Revista Española de Pedagogía Abbreviated Journal Rev. Esp. Pedagog.
Volume 80 Issue 281 Pages 111-129
Keywords Forthcoming Spanish educational legislation; primary school; secondary education; universities
Abstract This paper provides some reasons that explain, in the view of the author, why the present eagerness of the Spanish Educational Authorities to reform all levels of education, from primary school to the universities, will not improve the quality of the Spanish educational system.
Address [Adolfo de Azcarraga, Jose] Univ Valencia, Fis Teor, Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es
Corporate Author Thesis
Publisher Univ Int Rioja-Unir Place of Publication Editor
Language Spanish Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-9461 ISBN Medium
Area Expedition Conference
Notes WOS:000752024500007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5125
Permanent link to this record
 

 
Author Garcia Navarro, J.E.; Fernandez-Prieto, L.M.; Villaseñor, A.; Sanz, V.; Ammirati, J.B.; Diaz Suarez, E.A.; Garcia, C.
Title Performance of Deep Learning Pickers in Routine Network Processing Applications Type Journal Article
Year 2022 Publication Seismological Research Letters Abbreviated Journal Seismol. Res. Lett.
Volume 93 Issue Pages 2529-2542
Keywords
Abstract Picking arrival times of P and S phases is a fundamental and time‐consuming task for the routine processing of seismic data acquired by permanent and temporary networks. A large number of automatic pickers have been developed, but to perform well they often require the tuning of multiple parameters to adapt them to each dataset. Despite the great advance in techniques, some problems remain, such as the difficulty to accurately pick S waves and earthquake recordings with a low signal‐to‐noise ratio. Recently, phase pickers based on deep learning (DL) have shown great potential for event identification and arrival‐time picking. However, the general adoption of these methods for the routine processing of monitoring networks has been held back by factors such as the availability of well‐documented software, computational resources, and a gap in knowledge of these methods. In this study, we evaluate recent available DL pickers for earthquake data, comparing the performance of several neural network architectures. We test the selected pickers using three datasets with different characteristics. We found that the analyzed DL pickers (generalized phase detection, PhaseNet, and EQTransformer) perform well in the three tested cases. They are very efficient at ignoring large‐amplitude transient noise and at picking S waves, a task that is often difficult even for experienced analysts. Nevertheless, the performance of the analyzed DL pickers varies widely in terms of sensitivity and false discovery rate, with some pickers missing a significant percentage of true picks and others producing a large number of false positives. There are also variations in run time between DL pickers, with some of them requiring significant resources to process large datasets. In spite of these drawbacks, we show that DL pickers can be used efficiently to process large seismic datasets and obtain results comparable or better than current standard procedures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5500
Permanent link to this record