|   | 
Details
   web
Records
Author n_TOF Collaboration (Paradela, C. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title High-accuracy determination of the U-238/U-235 fission cross section ratio up to approximate to 1 GeV at n_TOF at CERN Type Journal Article
Year 2015 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 91 Issue 2 Pages 024602 - 11pp
Keywords
Abstract The U-238 to U-235 fission cross section ratio has been determined at nTOF up to approximate to 1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at nTOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++ /Gemini++ combination up to the highest measured energy. The n_TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to approximate to 1 GeV.
Address [Paradela, C.; Tarrio, D.; Leal-Cidoncha, E.; Duran, I.; Alvarez, H.] Univ Santiago de Compostela, Santiago De Compostela, Spain, Email: nicola.colonna@ba.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000350174000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2139
Permanent link to this record
 

 
Author n_TOF Collaboration (Zugec, P. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 760 Issue Pages 57-67
Keywords GEANT4 simulations; Neutron time of flight; Neutron background; N_TOF; Neutron capture
Abstract The neutron sensitivity of the Cr6D6 detector setup used at nTOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire nTOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a(nat)-C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured C-nat yield has been discovered, which prevents the use of C-nat data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements.
Address [Zugec, P.; Bosnar, D.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia, Email: pzugec@phy.hr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000338350500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1828
Permanent link to this record
 

 
Author n_TOF Collaboration (Zugec, P. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title Experimental neutron capture data of Ni-58 from the CERN n_TOF facility Type Journal Article
Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 89 Issue 1 Pages 014605 - 9pp
Keywords
Abstract The Ni-58(n,gamma) cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT = 5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2 +/- 0.6(stat) +/- 1.8(sys) mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When included in models of the s-process nucleosynthesis in massive stars, this change results in a 60% increase of the abundance of Ni-58, with a negligible propagation on heavier isotopes. The reason is that, using both the old or the new MACS, Ni-58 is efficiently depleted by neutron captures.
Address [Zugec, P.; Bosnar, D.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia, Email: pzugec@phy.hr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000332151100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1727
Permanent link to this record
 

 
Author Domingo-Pardo, C.
Title i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 825 Issue Pages 78-86
Keywords Radiative neutron capture; Neutron time-of-flight; Cross-section; Pulse-height weighting technique; Compton imaging
Abstract A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.
Address [Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000376713700010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2686
Permanent link to this record
 

 
Author n_TOF Collaboration (Lederer, C. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title Neutron Capture Cross Section of Unstable Ni-63: Implications for Stellar Nucleosynthesis Type Journal Article
Year 2013 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 110 Issue 2 Pages 022501 - 5pp
Keywords
Abstract The Ni-63(n, gamma) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT = 5-100 keV with uncertainties around 20%. Stellar model calculations for a 25M(circle dot) star show that the new data have a significant effect on the s-process production of Cu-63, Ni-64, and Zn-64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.
Address [Lederer, C.; Paradela, C.; Wallner, A.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000313336500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1305
Permanent link to this record
 

 
Author Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Kappeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.K.
Title Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the gamma process Type Journal Article
Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 84 Issue 1 Pages 015802 - 11pp
Keywords
Abstract Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E(p) = 2.75-9 MeV, close to the upper end of the respective Gamow window of the. process. We have determined cross sections for (102)Pd(p,gamma)(103)Ag, (104)Pd(p,gamma)(105)Ag, and (105)Pd(p,n)(105)Ag, as well as partial cross sections of (104)Pd(p,n)(104)Ag(g), (105)Pd(p,gamma)(106)Ag(m), (106)Pd(p,n)(106)Ag(m), and (110)Pd(p,n)(110)Ag(m) with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in gamma-process calculations.
Address [Dillmann, I; Coquard, L; Domingo-Pardo, C; Kappeler, F; Marganiec, J; Uberseder, E] KIT, Inst Kernphys, D-76021 Karlsruhe, Germany, Email: i.dillmann@gsi.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000292875300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 748
Permanent link to this record
 

 
Author Pasqualato, G. et al; Domingo-Pardo, C.; Gadea, A.
Title Shape evolution in even-mass 98-104Zr isotopes via lifetime measurements using the γ γ-coincidence technique Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 11 Pages 276 - 13pp
Keywords
Abstract The Zirconium (Z = 40) isotopic chain has attracted interest for more than four decades. The abrupt lowering of the energy of the first 2(+) state and the increase in the transition strength B(E2; 2(1)(+) -> 0(1)(+) ) going from Zr-98 to Zr-100 has been the first example of “quantum phase transition” in nuclear shapes, which has few equivalents in the nuclear chart. Although a multitude of experiments have been performed to measure nuclear properties related to nuclear shapes and collectivity in the region, none of the measured lifetimes were obtained using the Recoil Distance Doppler Shift method in the gamma gamma-coincidence mode where a gate on the direct feeding transition of the state of interest allows a strict control of systematical errors. This work reports the results of lifetime measurements for the first yrast excited states in Zr98-104 carried out to extract reduced transition probabilities. The new lifetime values in gamma gamma-coincidence and gamma-single mode are compared with the results of former experiments. Recent predictions of the Interacting Boson Model with Configuration Mixing, the Symmetry Conserving Configuration Mixing model based on the Hartree-Fock- Bogoliubov approach and the Monte Carlo Shell Model are presented and compared with the experimental data.
Address [Pasqualato, G.; Ljungvall, J.; Georgiev, G.; Korichi, A.; Ralet, D.; Verney, D.] Univ Paris Saclay, CNRS, IN2P3, IJCLab, Orsay, France, Email: giorgia.pasqualato.1@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001107209400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5852
Permanent link to this record
 

 
Author Domingo-Pardo, C.
Title Beta-delayed neutron emission: first measurements in the heavy mass region and future prospects Type Journal Article
Year 2016 Publication Acta Physica Polonica B Abbreviated Journal Acta Phys. Pol. B
Volume 47 Issue 3 Pages 729-737
Keywords
Abstract Beta-delayed neutrons play a key role in the formation of heavy elements in explosive stellar environments. The final r-process abundance distribution, including the rare-earth peak, is tailored to a large extent by the neutrons released after the beta decay of very exotic neutron-rich nuclei encountered along the r-process path and during the freeze-out phase. Such scenarios involve a vast amount of – yet undiscovered – nuclei, and most of them are expected to be neutron emitters. In this respect, existing beta-delayed neutron emission data is rather scarce, spanning from the lightest isotopes up to the region of the fission-fragments with masses up to A similar to 150. This contribution gives an overview on the latest measurements of neutron branching ratios in the heavy mass region around N = 126, which was practically unexplored in the past. Present plans to access very exotic nuclei at the RIB-facility of RIKEN in the framework of the BRIKEN project, are presented, together with the expected impact in r-process nucleosynthesis studies.
Address [Domingo-Pardo, C.; S410 GSI Collaboration; BRIKEN Collaboration] Univ Valencia, CSIC, IFIC, Valencia, Spain
Corporate Author Thesis
Publisher Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4254 ISBN Medium
Area Expedition Conference
Notes WOS:000373495500015 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2623
Permanent link to this record
 

 
Author n_TOF Collaboration; Kappeler, F.; Mengoni, A.; Mosconi, M.; Fujii, K.; Heil, M.; Domingo-Pardo, C.
Title Neutron Studies for Dating the Universe Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 2094-2099
Keywords Neutron capture and inelastic scattering cross sections; Re/Os cosmo-chronometer
Abstract The neutron capture cross sections of (186)Os and (187)Os are of key importance for defining the 8-process abundance of (187)Os at the formation of the solar system. This quantity can be used to determine the radiogenic abundance component of (187)Os from the decay of (187)Re (t(1/2) = 41.2 Gyr) and to infer the time-duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of (186)Os, (187)Os, and (188)Os have been measured at the CERN nTOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. From these data Maxwellian averaged capture cross sections have been calculated with uncertainties between 3.3 and 4.7%. Additional information was obtained by measuring the inelastic scattering cross section of (187)Os at the Karlsruhe 3.7 MV Van de Graaff accelerator and by neutron resonance analyses of the nTOF capture data to establish a comprehensive experimental basis for the Hauser-Feshbach statistical model. Consistent I-IF calculations for the capture and inelastic reaction channels were performed to determine the stellar enhancement factors, which are required to correct the Maxwellian averaged cross sections for the effect of thermally populated excited states. The consequences of this analysis for the s-process component of the (187)Os abundance and the related impact on the evaluation of the time-duration of Galactic nucleosynthesis via the Re/Os cosmo-chronometer are discussed.
Address [Kappeler, F] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: franz.kaeppeler@kit.edu
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700156 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 742
Permanent link to this record
 

 
Author n_TOF Collaboration (Calviani, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 1912-1915
Keywords ND2010; Nuclear data; ENDF; n_TOF; Neutron-induced fission reactions; Am; Cm; U
Abstract Neutron-induced fission cross-sections of minor actinides have been measured using the nTOF white neutron source at CERN. Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at nTOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of (233)U, (245)cm and (243)Am from thermal to 20 MeV are here reported, together with preliminary results for (241)Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of (235)U, measured simultaneously with the same detector.
Address [Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V] CERN, Geneva, Switzerland, Email: marco.calviani@cern.ch
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700111 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 741
Permanent link to this record