|   | 
Details
   web
Records
Author Fileviez Perez, P.; Golias, E.; Li, R.H.; Murgui, C.
Title Leptophobic dark matter and the baryon number violation scale Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 3 Pages 035009 - 16pp
Keywords
Abstract We discuss the possible connection between the scale for baryon number violation and the cosmological bound on the dark matter relic density. A simple gauge theory for baryon number which predicts the existence of a leptophobic cold dark matter particle candidate is investigated. In this context, the dark matter candidate is a Dirac fermion with mass defined by the new symmetry breaking scale. Using the cosmological bounds on the dark matter relic density we find the upper bound on the symmetry breaking scale around 200 TeV. The properties of the leptophobic dark matter candidate are investigated in great detail and we show the prospects to test this theory at current and future experiments. We discuss the main implications for the mechanisms to explain the matter and antimatter asymmetry in the Universe.
Address [Perez, Pavel Fileviez; Golias, Elliot; Li, Rui-Hao] Case Western Reserve Univ, Dept Phys, Rockefeller Bldg,2076 Adelbert Rd, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000458370300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3908
Permanent link to this record
 

 
Author PTOLEMY Collaboration (Betti, M.G. et al); de Salas, P.F.; Gariazzo, S.; Pastor, S.
Title A design for an electromagnetic filter for precision energy measurements at the tritium endpoint Type Journal Article
Year 2019 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 106 Issue Pages 120-131
Keywords PTOLEMY; Relic neutrino; Cosmic Neutrino Background; CNB; Neutrino mass; Transverse drift filter
Abstract We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E x B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems. (C) 2019 Elsevier B.V. All rights reserved.
Address [Hochberg, Y.] Hebrew Univ Jerusalem, Racah Inst Phys, Jerusalem, Israel, Email: cgtully@Princeton.EDU
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000464490900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3978
Permanent link to this record
 

 
Author Hernandez, P.; Jones-Perez, J.; Suarez-Navarro, O.
Title Majorana vs pseudo-Dirac neutrinos at the ILC Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 3 Pages 220 - 11pp
Keywords
Abstract Neutrino masses could originate in seesaw models testable at colliders, with light mediators and an approximate lepton number symmetry. The minimal model of this type contains two quasi-degenerate Majorana fermions forming a pseudo-Dirac pair. An important question is to what extent future colliders will have sensitivity to the splitting between the Majorana components, since this quantity signals the breaking of lepton number and is connected to the light neutrino masses. We consider the production of these neutral heavy leptons at the ILC, where their displaced decays provide a golden signal: a forward-backward charge asymmetry, which depends crucially on the mass splitting between the two Majorana components. We show that this observable can constrain the mass splitting to values much lower than current bounds from neutrinoless double beta decay and natural loop corrections.
Address [Hernandez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, Valencia 46071, Spain, Email: jones.j@pucp.edu.pe
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000460985800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3960
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title First Measurement of Charm Production in its Fixed-Target Configuration at the LHC Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 122 Issue 13 Pages 132002 - 12pp
Keywords
Abstract The first measurement of heavy-flavor production by the LHCb experiment in its fixed-target mode is presented. The production of J/psi and D-0 mesons is studied with beams of protons of different energies colliding with gaseous targets of helium and argon with nucleon-nucleon center-of-mass energies of root s(NN) = 86.6 and 110.4 GeV, respectively. The J/psi and D-0 production cross sections in pHe collisions in the rapidity range [2, 4.6] are found to be sigma(J/psi) = 652 +/- 33(stat) +/- 42(syst) nb/nucleon and sigma(D0) = 80.8 +/- 2.4(syst) +/- 6.3(syst) μb/nucleon, where the first uncertainty is statistical and the second is systematic. No evidence for a substantial intrinsic charm content of the nucleon is observed in the large Bjorken-x region.
Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000463900300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3974
Permanent link to this record
 

 
Author Karan, A.; Sinha, R.; Mandal, R.
Title Testing WW gamma vertex in radiative muon decay Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 3 Pages 033006 - 9pp
Keywords
Abstract Large numbers of muons will be produced at facilities developed to probe the lepton-flavor-violating process μ-> e gamma. We show that by constructing a suitable asymmetry, radiative muon decay μ-> e gamma nu(mu)(nu) over bar (e) can also be used to test the WW gamma vertex at such facilities. The process has two missing neutrinos in the final state, and upon integrating their momenta the partial differential decay rate shows no radiation-amplitude zero. However, we establish that an easily separable part of the normalized differential decay rate that is odd under the exchange of photon and electron energies does have a zero in the case of the standard model (SM). This new type of zero has hitherto not been studied in the literature. A suitably constructed asymmetry using this fact enables a sensitive probe for the WW gamma vertex beyond the SM. With a simplistic analysis, we find that the C- and P-conserving dimension-four WW gamma vertex can be probed at O(10(-2)) with a satisfactory significance level.
Address [Karan, Anirban; Sinha, Rahul] Inst Math Sci, Chennai 600113, India, Email: kanirban@imsc.res.in;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000458370800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3907
Permanent link to this record