toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Ballester, F.; Tedgren, A.C.; Granero, D.; Haworth, A.; Mourtada, F.; Fonseca, G.P.; Zourari, K.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.L.; Thomson, R.M.; Verhaegen, F.; Vijande, J.; Ma, Y.Z.; Beaulieu, L. doi  openurl
  Title A generic high-dose rate Ir-192 brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism Type Journal Article
  Year 2015 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 42 Issue 6 Pages 3048-3062  
  Keywords Ir-192; HDR brachytherapy; Monte Carlo methods; model-based dose calculation; TG-186  
  Abstract Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) Ir-192 source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR Ir-192 source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic Ir-192 source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra (R) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision AcuRos (TM)]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and pENELopE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR Ir-192 source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. Results: TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ACE algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 +/- 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ACE at clinically relevant distances. Conclusions: A hypothetical, generic HDR Ir-192 source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs.  
  Address [Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: Facundo.Ballester@uv.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356998300031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2315  
Permanent link to this record
 

 
Author Granero, D.; Perez-Calatayud, J.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations Type Journal Article
  Year 2014 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 41 Issue 2 Pages 021703 - 8pp  
  Keywords HDR; brachytherapy; skin; Monte Carlo; Geant4; Co-60; Ir-192; Yb-169  
  Abstract Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm x 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR Co-60 and Ir-192 sources and a hypothetical Yb-169 source were considered. The Geant4Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm x 5 cm Ir-192 superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about -3%. When the source was positioned at the skin surface, dose differences were smaller than -1% for Co-60 and Ir-192, yet -3% for Yb-169. For the interstitial implant, dose differences at the skin surface were -7% for Co-60, -0.6% for Ir-192, and -2.5% for Yb-169. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either Co-60 and Ir-192. For lower energy radionuclides like Yb-169, bolus may be needed; and (iii) for the interstitial case, at least a 0.1 cm bolus is advised for Co-60 to avoid underdosing superficial target layers. For Ir-192 and Yb-169, no bolus is needed. For those cases where no bolus is needed, its use might be detrimental as the lack of radiation scatter may be beneficial to the patient, although the 2% tolerance for dose calculation accuracy recommended in the AAPM TG-56 report is not fulfilled.  
  Address [Granero, Domingo] Hosp Gen Univ, ERESA, Dept Radiat Phys, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331213300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1704  
Permanent link to this record
 

 
Author Granero, D.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Dosimetry revisited for the HDR Ir-192 brachytherapy source model mHDR-v2 Type Journal Article
  Year 2011 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 38 Issue 1 Pages 487-494  
  Keywords Ir-192; brachytherapy; dosimetry; TG-43; PSS model; MCNP5; PENELOPE2008; GEANT4  
  Abstract Purpose: Recently, the manufacturer of the HDR Ir-192 mHDR-v2 brachytherapy source reported small design changes (referred to herein as mHDR-v2r) that are within the manufacturing tolerances but may alter the existing dosimetric data for this source. This study aimed to (1) check whether these changes affect the existing dosimetric data published for this source; (2) obtain new dosimetric data in close proximity to the source, including the contributions from 192Ir electrons and considering the absence of electronic equilibrium; and (3) obtain scatter dose components for collapsed cone treatment planning system implementation. Methods: Three different Monte Carlo (MC) radiation transport codes were used: MCNP5, PENELOPE2008, and GEANT4. The source was centrally positioned in a 40 cm radius water phantom. Absorbed dose and collision kerma were obtained using 0.1 mm (0.5 mm) thick voxels to provide high-resolution dosimetry near (far from) the source. Dose-rate distributions obtained with the three MC codes were compared. Results: Simulations of mHDR-v2 and mHDR-v2r designs performed with three radiation transport codes showed agreement typically within 0.2% for r >= 0.25 cm. Dosimetric contributions from source electrons were significant for r<0.25 cm. The dose-rate constant and radial dose function were similar to those from previous MC studies of the mHDR-v2 design. The 2D anisotropy function also coincided with that of the mHDR-v2 design for r >= 0.25 cm. Detailed results of dose distributions and scatter components are presented for the modified source design. Conclusions: Comparison of these results to prior MC studies showed agreement typically within 0.5% for r >= 0.25 cm. If dosimetric data for r<0.25 cm are not needed, dosimetric results from the prior MC studies will be adequate. c 2011 American Association of Physicists in Medicine.  
  Address [Granero, Domingo] Hosp Gen Univ, Dept Radiat Phys, ERESA, E-46014 Valencia, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285769800050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 557  
Permanent link to this record
 

 
Author Fernandez-Carames, T.; Valcarce, A.; Vijande, J. doi  openurl
  Title Charged charmonium molecules Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 5 Pages 054032 - 5pp  
  Keywords  
  Abstract We make use of a self-consistent quark-model based study of four-quark charmonium-like states to interpret recent charmonium experimental data. We conclude that there exists a D*(D) over bar* meson-meson molecule with quantum numbers (I-G) J(PC) = (1(-))2(++). Our study confirms the presence of charged charmonium-like resonances on the excited charmonium spectrum. We find support from recent experimental data by the Belle Collaboration [R. Mizuk et al. (Belle Collaboration), Phys. Rev. D 78, 072004 (2008)]. Confirmation of the experimental data by the Belle Collaboration and the determination of the quantum numbers of the new structures would help in discriminating among different theoretical models and would give further support to the theoretical analysis of T. Fernandez-Carames, A. Valcarce, and J. Vijande [Phys. Rev. Lett. 103, 222001 (2009)].  
  Address [Carames, T. F.; Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282271100006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 366  
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Ballester, F.; Vijande, J.; Gimenez, V.; Gimenez-Alventosa, V.; Perez-Calatayud, J.; Niatsetski, Y.; Andreo, P. doi  openurl
  Title Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya(R) unit: a Monte Carlo study Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 24 Pages 245026 - 12pp  
  Keywords electronic brachytherapy; eBT; dosimetry; ionization chamber; Monte Carlo  
  Abstract Three different correction factors for measurements with the parallel-plate ionization chamber PTW T34013 on the Esteya electronic brachytherapy unit have been investigated. This chamber type is recommended by AAPM TG-253 for depth-dose measurements in the 69.5 kV x-ray beam generated by the Esteya unit. Monte Carlo simulations using the PENELOPE-2018 system were performed to determine the absorbed dose deposited in water and in the chamber sensitive volume at different depths with a Type A uncertainty smaller than 0.1%. Chamber-to-chamber differences have been explored performing measurements using three different chambers. The range of conical applicators available, from 10 to 30 mm in diameter, has been explored. Using a depth-independent global chamber perturbation correction factor without a shift of the effective point of measurement yielded differences between the absorbed dose to water and the corrected absorbed dose in the sensitive volume of the chamber of up to 1% and 0.6% for the 10 mm and 30 mm applicators, respectively. Calculations using a depth-dependent perturbation factor, including or excluding a shift of the effective point of measurement, resulted in depth-dose differences of about +/- 0.5% or less for both applicators. The smallest depth-dose differences were obtained when a shift of the effective point of measurement was implemented, being displaced 0.4 mm towards the center of the sensitive volume of the chamber. The correction factors were obtained with combined uncertainties of 0.4% (k = 2). Uncertainties due to chamber-to-chamber differences are found to be lower than 2%. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each electronic brachytherapy device and ionization chamber used for its dosimetry.  
  Address [Valdes-Cortez, Christian; Ballester, Facundo; Vijande, Javier] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: cvalcort@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000618031500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4708  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva