toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author de Vega, I.; Bañuls, M.C.; Perez, A. url  doi
openurl 
  Title Effects of dissipation on an adiabatic quantum search algorithm Type Journal Article
  Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 12 Issue Pages 123010 - 19pp  
  Keywords  
  Abstract According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.  
  Address [de Vega, Ines] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany, Email: ines.devega@uni-ulm.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285582800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 303  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector Type Journal Article
  Year 2010 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 34 Issue 3 Pages 179-184  
  Keywords Atmospheric muons; Neutrino telescope; Depth-intensity relation  
  Abstract The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.  
  Address [Bazzotti, M.; Biagi, S.; Carminati, G.; Giacomelli, G.; Margiotta, A.; Spurio, M.] Dipartimento Fis Univ, I-40127 Bologna, Italy, Email: Annarita.Margiotta@bo.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282496000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 373  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Performance of the front-end electronics of the ANTARES neutrino telescope Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 622 Issue 1 Pages 59-73  
  Keywords Neutrino telescope; Photomultiplier tube; Front-end electronics; ASIC  
  Abstract ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip: results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.  
  Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, CSIC, Valencia 46071, Spain, Email: s.loucatos@cea.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282530300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 363  
Permanent link to this record
 

 
Author Bodenstein, S.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Charm-quark mass from weighted finite energy QCD sum rules Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 11 Pages 114013 - 5pp  
  Keywords  
  Abstract The running charm-quark mass in the scheme is determined from weighted finite energy QCD sum rules involving the vector current correlator. Only the short distance expansion of this correlator is used, together with integration kernels (weights) involving positive powers of s, the squared energy. The optimal kernels are found to be a simple pinched kernel and polynomials of the Legendre type. The former kernel reduces potential duality violations near the real axis in the complex s plane, and the latter allows us to extend the analysis to energy regions beyond the end point of the data. These kernels, together with the high energy expansion of the correlator, weigh the experimental and theoretical information differently from e. g. inverse moments finite energy sum rules. Current, state of the art results for the vector correlator up to four-loop order in perturbative QCD are used in the finite energy sum rules, together with the latest experimental data. The integration in the complex s plane is performed using three different methods: fixed order perturbation theory, contour improved perturbation theory, and a fixed renormalization scale mu. The final result is (m) over bar (c)(3 GeV) = 1008 +/- 26 MeV, in a wide region of stability against changes in the integration radius s(0) in the complex s plane.  
  Address [Bodenstein, S.; Dominguez, C. A.] Univ Cape Town, Ctr Theoret & Math Phys, ZA-7700 Rondebosch, South Africa  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286567000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 527  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muñoz, J.; Novella, P.; Poves, A. url  doi
openurl 
  Title Sense and sensitivity of double beta decay experiments Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 007 - 30pp  
  Keywords double beta decay; neutrino experiments; neutrino properties  
  Abstract The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m(beta beta). In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a “physics-motivated range” (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and beta beta isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that Xe-136-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.  
  Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Munoz, J.] CSIC, IFIC, Valencia 46071, Spain, Email: gomez@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292332400007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 675  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva