toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Assam, I.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Poppe, B.; Siebert, F.A. doi  openurl
  Title Evaluation of dosimetric effects of metallic artifact reduction and tissue assignment on Monte Carlo dose calculations for I-125 prostate implants Type Journal Article
  Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 49 Issue Pages 6195-6208  
  Keywords metallic artifact reduction; Monte Carlo dosimetry; post-implant CT; prostate brachytherapy; tissue assignment schemes; voxelized virtual patient model  
  Abstract Purpose Monte Carlo (MC) simulation studies, aimed at evaluating the magnitude of tissue heterogeneity in I-125 prostate permanent seed implant brachytherapy (BT), customarily use clinical post-implant CT images to generate a virtual representation of a realistic patient model (virtual patient model). Metallic artifact reduction (MAR) techniques and tissue assignment schemes (TAS) are implemented on the post-implant CT images to mollify metallic artifacts due to BT seeds and to assign tissue types to the voxels corresponding to the bright seed spots and streaking artifacts, respectively. The objective of this study is to assess the combined influence of MAR and TAS on MC absorbed dose calculations in post-implant CT-based phantoms. The virtual patient models used for I-125 prostate implant MC absorbed dose calculations in this study are derived from the CT images of an external radiotherapy prostate patient without BT seeds and prostatic calcifications, thus averting the need to implement MAR and TAS. Methods The geometry of the IsoSeed I25.S17plus source is validated by comparing the MC calculated results of the TG-43 parameters for the line source approximation with the TG-43U1S2 consensus data. Four MC absorbed dose calculations are performed in two virtual patient models using the egs_brachy MC code: (1) TG-43-based D-w,w-TG(43), (2) D-w,D-w-MBDC that accounts for interseed scattering and attenuation (ISA), (3) D-m,D-m that examines ISA and tissue heterogeneity by scoring absorbed dose in tissue, and (4) D-w,D-m that unlike D-m,D-m scores absorbed dose in water. The MC absorbed doses (1) and (2) are simulated in a TG-43 patient phantom derived by assigning the densities of every voxel to 1.00 g cm(-3) (water), whereas MC absorbed doses (3) and (4) are scored in the TG-186 patient phantom generated by mapping the mass density of each voxel to tissue according to a CT calibration curve. The MC absorbed doses calculated in this study are compared with VariSeed v8.0 calculated absorbed doses. To evaluate the dosimetric effect of MAR and TAS, the MC absorbed doses of this work (independent of MAR and TAS) are compared to the MC absorbed doses of different I-125 source models from previous studies that were calculated with different MC codes using post-implant CT-based phantoms generated by implementing MAR and TAS on post-implant CT images. Results The very good agreement of TG-43 parameters of this study and the published consensus data within 3% validates the geometry of the IsoSeed I25.S17plus source. For the clinical studies, the TG-43-based calculations show a D-90 overestimation of more than 4% compared to the more realistic MC methods due to ISA and tissue composition. The results of this work generally show few discrepancies with the post-implant CT-based dosimetry studies with respect to the D-90 absorbed dose metric parameter. These discrepancies are mainly Type B uncertainties due to the different I-125 source models and MC codes. Conclusions The implementation of MAR and TAS on post-implant CT images have no dosimetric effect on the I-125 prostate MC absorbed dose calculation in post-implant CT-based phantoms.  
  Address [Assam, Isong; Siebert, Frank-Andre] UKSH, Clin Radiotherapy Radiooncol, Campus Kiel, Kiel, Germany, Email: Isong.Assam@uksh.de  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000835807200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5321  
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Niatsetski, Y.; Perez-Calatayud, J.; Ballester, F.; Vijande, J. doi  openurl
  Title A Monte Carlo study of the relative biological effectiveness in surface brachytherapy Type Journal Article
  Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 49 Issue Pages 5576-5588  
  Keywords Monte Carlo; relative biological effectiveness; surface HDR brachytherapy  
  Abstract Purpose This work aims to simulate clustered DNA damage from ionizing radiation and estimate the relative biological effectiveness (RBE) for radionuclide (rBT)- and electronic (eBT)-based surface brachytherapy through a hybrid Monte Carlo (MC) approach, using realistic models of the sources and applicators. Methods Damage from ionizing radiation has been studied using the Monte Carlo Damage Simulation algorithm using as input the primary electron fluence simulated using a state-of-the-art MC code, PENELOPE-2018. Two Ir-192 rBT applicators, Valencia and Leipzig, one Co-60 source with a Freiburg Flap applicator (reference source), and two eBT systems, Esteya and INTRABEAM, have been included in this study implementing full realizations of their geometries as disclosed by the manufacturer. The role played by filtration and tube kilovoltage has also been addressed. Results For rBT, an RBE value of about 1.01 has been found for the applicators and phantoms considered. In the case of eBT, RBE values for the Esteya system show an almost constant RBE value of about 1.06 for all depths and materials. For INTRABEAM, variations in the range of 1.12-1.06 are reported depending on phantom composition and depth. Modifications in the Esteya system, filtration, and tube kilovoltage give rise to variations in the same range. Conclusions Current clinical practice does not incorporate biological effects in surface brachytherapy. Therefore, the same absorbed dose is administered to the patients independently on the particularities of the rBT or eBT system considered. The almost constant RBE values reported for rBT support that assumption regardless of the details of the patient geometry, the presence of a flattening filter in the applicator design, or even significant modifications in the photon energy spectra above 300 keV. That is not the case for eBT, where a clear dependence on the eBT system and the characteristics of the patient geometry are reported. A complete study specific for each eBT system, including detailed applicator characteristics (size, shape, filtering, among others) and common anatomical locations, should be performed before adopting an existing RBE value.  
  Address [Valdes-Cortez, Christian] Hosp Reg Antofagasta, Nucl Med Dept, Antofagasta, Chile, Email: cvalcort@gmail.com  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000811709400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5262  
Permanent link to this record
 

 
Author Ma, Y.Z.; Vijande, J.; Ballester, F.; Tedgren, A.C.; Granero, D.; Haworth, A.; Mourtada, F.; Fonseca, G.P.; Zourari, K.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.; Chamberland, M.J.P.; Thomson, R.M.; Verhaegen, F.; Beaulieu, L. doi  openurl
  Title A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate Ir-192 brachytherapy Type Journal Article
  Year 2017 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 44 Issue 11 Pages 5961-5976  
  Keywords Ir-192; HDR brachytherapy; model based dose calculation; Monte Carlo methods; shielded applicator; TG-186  
  Abstract PurposeA joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) Ir-192 shielded applicator has been designed and benchmarked. MethodsA generic HDR Ir-192 shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 Ir-192 source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra((R)) Brachy with Advanced Collapsed-cone Engine, ACE, and BrachyVision ACUROS) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported source centered in water and source displaced test cases, and the new source centered in applicator test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. ResultsThe local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the source centered in water and source displaced test cases and for the clinically relevant part of the unshielded volume in the source centered in applicator case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. ConclusionsThe combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR Ir-192 brachytherapy.  
  Address [Ma, Yunzhi; Beaulieu, Luc] CHU Quebec, Dept Radio Oncol & Axe Oncol, Ctr Rech, Quebec City, PQ G1R 2J6, Canada, Email: yunzhi.Ma@crchuq.ulaval.ca  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414970800039 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3370  
Permanent link to this record
 

 
Author Schaffter, T. et al; Albiol, F.; Caballero, L. doi  openurl
  Title Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms Type Journal Article
  Year 2020 Publication JAMA Network Open Abbreviated Journal JAMA Netw. Open  
  Volume 3 Issue 3 Pages e200265 - 15pp  
  Keywords  
  Abstract Importance Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. Objective To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. Design, Setting, and Participants In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. Main Outcomes and Measurements Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. Results Overall, 144231 screening mammograms from 85580 US women (952 cancer positive <= 12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166578 examinations from 68008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. Conclusions and Relevance While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation. Question How do deep learning algorithms perform compared with radiologists in screening mammography interpretation? Findings In this diagnostic accuracy study using 144231 screening mammograms from 85580 women from the United States and 166578 screening mammograms from 68008 women from Sweden, no single artificial intelligence algorithm outperformed US community radiologist benchmarks; including clinical data and prior mammograms did not improve artificial intelligence performance. However, combining best-performing artificial intelligence algorithms with single-radiologist assessment demonstrated increased specificity. Meaning Integrating artificial intelligence to mammography interpretation in single-radiologist settings could yield significant performance improvements, with the potential to reduce health care system expenditures and address resource scarcity experienced in population-based screening programs. This diagnostic accuracy study evaluates whether artificial intelligence can overcome human mammography interpretation limits with a rigorous, unbiased evaluation of machine learning algorithms.  
  Address [Schaffter, Thomas; Hoff, Bruce; Yu, Thomas; Neto, Elias Chaibub; Friend, Stephen; Guinney, Justin] Sage Bionetworks, Computat Oncol, Seattle, WA USA, Email: gustavo@us.ibm.com  
  Corporate Author Thesis  
  Publisher Amer Medical Assoc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-3805 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519249800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4683  
Permanent link to this record
 

 
Author Vento, V. openurl 
  Title Ions, Protons, and Photons as Signatures of Monopoles Type Journal Article
  Year 2018 Publication Universe Abbreviated Journal Universe  
  Volume 4 Issue 11 Pages 117 - 12pp  
  Keywords  
  Abstract Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole-antimonopole) annihilation into many photons over two photon decays.  
  Address [Vento, Vicente] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: vicente.vento@uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-1997 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451167700007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3819  
Permanent link to this record
 

 
Author Gersabeck, E.; Pich, A. openurl 
  Title Tau and charm decays Type Journal Article
  Year 2020 Publication Comptes Rendus Physique Abbreviated Journal C. R. Phys.  
  Volume 21 Issue 1 Pages 75-92  
  Keywords Tau and charm physics; D-0 mixing; CP violation  
  Abstract A summary of recent precise results in tau and charm physics is presented. Topics include leptonic and hadronic tau decays, lepton flavour and lepton number violation, charm mixing and CP violation, leptonic and semileptonic charm decays, rare decays and spectroscopy.  
  Address [Gersabeck, Evelina] Univ Manchester, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: evelina.gersabeck@cern.ch;  
  Corporate Author Thesis  
  Publisher centre Mersenne pour ldition scientifique ouverte Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000573985600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4550  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Vos, M. openurl 
  Title Search for quantum black hole production in lepton plus jet final states using proton-proton collisions at √s=13 TeV with the ATLAS detector Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 3 Pages 032010 - 28pp  
  Keywords  
  Abstract A search for quantum black holes in electron + jet and muon + jet invariant mass spectra is performed with 140 fb(-1) of data collected by the ATLAS detector in proton-proton collisions at root s = 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton + jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.  
  Address [Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Petridis, A.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001183228500014 Approved no  
  Is ISI International Collaboration  
  Call Number IFIC @ pastor @ Serial 5987  
Permanent link to this record
 

 
Author NEMO-3 Collaboration (Argyriades, J. et al); Martin-Albo, J.; Novella, P. url  doi
openurl 
  Title Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector Type Journal Article
  Year 2010 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 847 Issue 3-4 Pages 168-179  
  Keywords RADIOACTIVITY Zr-96(2 beta); measured E-beta,E- E-gamma, beta beta-, beta gamma-coin; deduced T-1/2 for 2 nu beta beta-decay, NEMO-3 detector  
  Abstract Using 9.4 g of Zr-96 isotope and 1221 days of data from the NEMO-3 detector corresponding (0 0.031 kg y, the obtained 2 nu beta beta decay half-life measurement is T-1/2(2 nu) = [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10(19) yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2 nu beta beta half-life and is M-2 nu = 0.049 +/- 0.002. Constraints on 0 nu beta beta decay have also been set.  
  Address [Basharina-Freshville, A.; Chapon, A.; Daraktchieva, Z.; Flack, R.; Kauer, M.; King, S.; Saakyan, R.; Thomas, J.; Vasiliev, V.] UCL, London WC1E 6BT, England, Email: kauer@hep.ucl.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283955700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 337  
Permanent link to this record
 

 
Author Bazzocchi, F.; Cerdeño, D.G.; Muñoz, C.; Valle, J.W.F. url  doi
openurl 
  Title Calculable inverse-seesaw neutrino masses in supersymmetry Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 5 Pages 051701 - 5pp  
  Keywords  
  Abstract We provide a scenario where naturally small and calculable neutrino masses arise from a supersymmetry-breaking renormalization-group-induced vacuum expectation value. The construction consists of an extended version of the next-to-minimal supersymmetric standard model and the mechanism is illustrated for a universal choice of the soft supersymmetry-breaking parameters. The lightest supersymmetric particle can be an isosinglet scalar neutrino state, potentially viable as WIMP dark matter through its Higgs new boson coupling. The scenario leads to a plethora of new phenomenological implications at accelerators including the Large Hadron Collider.  
  Address [Bazzocchi, F.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands, Email: fbazzoc@few.vu.nl  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276194200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 471  
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Bazzocchi, F.; de Medeiros Varzielas, I.; Merlo, L.; Morisi, S. url  doi
openurl 
  Title Tri/Bi-maximal lepton mixing and leptogenesis Type Journal Article
  Year 2010 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 827 Issue 1-2 Pages 34-58  
  Keywords  
  Abstract In models with flavour symmetries added to the gauge group of the Standard Model the CP-violating asymmetry necessary for leptogenesis may be related with low-energy parameters. A particular case of interest is when the flavour symmetry produces exact Tri/Bi-maximal lepton mixing leading to a vanishing CP-violating asymmetry. In this paper we present a model-independent discussion that confirms this always occurs for unflavoured leptogenesis in type I see-saw scenarios, noting however that Tri/Bi-maximal mixing does not imply a vanishing asymmetry in general scenarios where there is interplay between type I and other see-saws. We also consider a specific model where the exact Tri/Bi-maximal mixing is lifted by corrections that can be parametrised by a small number of degrees of freedom and analyse in detail the existing link between low and high-energy parameters – focusing on how the deviations from Tri/Bi-maximal are connected to the parameters governing leptogenesis.  
  Address [Merlo, L.] Univ Padua, Dipartimento Fis G Galilei, Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy, Email: daristi@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000272669900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 512  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva