|   | 
Details
   web
Records
Author Yang, W.Q.; Di Valentino, E.; Mena, O.; Pan, S.
Title Dynamical dark sectors and neutrino masses and abundances Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 2 Pages 023535 - 17pp
Keywords
Abstract We investigate generalized interacting dark matter-dark energy scenarios with a time-dependent coupling parameter, allowing also for freedom in the neutrino sector. The models are tested in the phantom and quintessence regimes, characterized by equations of state, w(x) < -1 and w(x) > -1, respectively. Our analyses show that for some of the scenarios, the existing tensions on the Hubble constant H-0 and on the clustering parameter S-8 can be significantly alleviated. The relief is either due to (a) a dark energy component which lies within the phantom region or (b) the presence of a dynamical coupling in quintessence scenarios. The inclusion of massive neutrinos into the interaction schemes does not affect either the constraints on the cosmological parameters or the bounds on the total number or relativistic degrees of freedom N-eff, which are found to be extremely robust and, in general, strongly consistent with the canonical prediction N-eff = 3.045. The most stringent bound on the total neutrino mass M-nu is M-nu, < 0.116 eV and it is obtained within a quintessence scenario in which the matter mass-energy density is only mildly affected by the presence of a dynamical dark sector coupling.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000550997900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4472
Permanent link to this record
 

 
Author Yang, W.Q.; Di Valentino, E.; Mena, O.; Pan, S.; Nunes, R.C.
Title All-inclusive interacting dark sector cosmologies Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 8 Pages 083509 - 15pp
Keywords
Abstract In this paper we explore possible extensions of interacting dark energy cosmologies, where dark energy and dark matter interact nongravitationally with one another. In particular, we focus on the neutrino sector, analyzing the effect of both neutrino masses and the effective number of neutrino species. We consider the Planck 2018 legacy release data combined with several other cosmological probes, finding no evidence for new physics in the dark radiation sector. The current neutrino constraints from cosmology should therefore be regarded as robust, as they are not strongly dependent on the dark sector physics, once all the available observations are combined. Namely, we find a total neutrino mass g, < 0.15 eV and a number of effective relativistic degrees of freedom N-eff = 3.03(-0.33)(+0.33), both at 95% C.L., which are close to those obtained within the ACDM cosmology, M-v < 0.12 eV and N-eff = (+0.36)(-0.35), for the same data combination.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000523633500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4359
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S.
Title Nonminimal dark sector physics and cosmological tensions Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 6 Pages 063502 - 20pp
Keywords
Abstract We explore whether nonstandard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are (a) an interaction between the dark matter and dark energy components and (b) a dark energy equation of state w different from that of the canonical cosmological constant w = -1. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. Moreover, a clear degeneracy exists between these two parameters in the case of cosmic microwave background (CMB) data. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder H-0 measurements of Riess et al. (R19), as well as recent baryon acoustic oscillation (BAO) and type Ia supernovae (SNeIa) distance data. We find that in quintessence coupled dark energy models, where w > -1, the evidence for a nonzero coupling between the two dark sectors can surpass the 5 sigma significance. Moreover, for both Planck + BAO or Planck + SNeIa, we find a preference for w > -1 at about three standard deviations. Quintessence models are, therefore, in excellent agreement with current data when an interaction is considered. On the other hand, in phantom coupled dark energy models, there is no such preference for a nonzero dark sector coupling. All the models we consider significantly raise the value of the Hubble constant, easing the H-0 tension. In the interacting scenario, the disagreement between Planck thorn BAO and R19 is considerably reduced from 4.3 sigma in the case of the Lambda cold dark matter (Lambda CDM) model to about 2.5 sigma. The addition of low-redshift BAO and SNeIa measurements leaves, therefore, some residual tension with R19 but at a level that could be justified by a statistical fluctuation. Bayesian evidence considerations mildly disfavor both the coupled quintessence and phantom models, while mildly favoring a coupled vacuum scenario, even when late-time datasets are considered. We conclude that nonminimal dark energy cosmologies, such as coupled quintessence, phantom, or vacuum models, are still an interesting route toward softening existing cosmological tensions, even when low-redshift datasets and Bayesian evidence considerations are taken into account.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000517964500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4309
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S.
Title Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions Type Journal Article
Year 2020 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 30 Issue Pages 100666 - 12pp
Keywords Hubble tension; Cosmological parameters; Dark matter; Dark energy; Interacting dark energy
Abstract We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H-0 from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces the H-0 tension to a level which could possibly be compatible with a statistical fluctuation. The very same model also significantly reduces the Omega(m) – sigma(8) tension between CMB and cosmic shear measurements. Interactions between the dark sectors of our Universe remain therefore a promising joint solution to these persisting cosmological tensions.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000595300400037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4646
Permanent link to this record
 

 
Author Yang, W.Q.; Mena, O.; Pan, S.; Di Valentino, E.
Title Dark sectors with dynamical coupling Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 8 Pages 083509 - 11pp
Keywords
Abstract Coupled dark matter-dark energy scenarios arc modeled via a dimensionless parameter xi, which controls the strength of their interaction. While this coupling is commonly assumed to be constant, there is no underlying physical law or symmetry that forbids a time-dependent xi parameter. The most general and complete interacting scenarios between the two dark sectors should therefore allow for such a possibility, and it is the main purpose of this study to constrain two possible and well-motivated coupled cosmologies by means of the most recent and accurate early- and late-time universe observations. We find that CMB data alone prefer xi(z) > 0 and therefore a smaller amount of dark matter, alleviating some crucial and well-known cosmological data tensions. An objective assessment of the Bayesian evidence for the coupled models explored here shows no particular preference for the presence of a dynamical dark sector coupling.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000489039100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4166
Permanent link to this record