|   | 
Details
   web
Records
Author Capra, S.; Mengoni, D.; Dueñas, J.A.; John, P.R.; Gadea, A.; Aliaga, R.J.; Dormard, J.J.; Assie, M.; Pullia, A.
Title Performance of the new integrated front-end electronics of the TRACE array commissioned with an early silicon detector prototype Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 935 Issue Pages 178-184
Keywords ASIC; Charge-sensitive preamplifier; Low-noise applications; Particle spectrometry; Dead time; Silicon detector
Abstract The spectroscopic performances of the new integrated ASIC (Application-Specific Integrated Circuit) preamplifiers for highly segmented silicon detectors have been evaluated with an early silicon detector prototype of the TRacking Array for light Charged Ejectiles (TRACE). The ASICS were mounted on a custom-designed PCB (Printed Circuit Board) and the detector plugged on it. Energy resolution tests, performed on the same detector before and after irradiation, yielded a resolution of 21 keV and 33 keV FWHM respectively. The output signals were acquired with an array of commercial 100-MHz 14-bit digitizers. The preamplifier chip is equipped with an innovative Fast-Reset device that has two functions: it reduces dramatically the dead time of the preamplifier in case of saturation (from milliseconds to microseconds) and extends the spectroscopic dynamic range of the preamplifier by more than one order of magnitude. Other key points of the device are the low noise and the wide bandwidth.
Address [Capra, S.; Pullia, A.] Univ Milan, Dipartimento Fis, Via Celoria 16, IT-20133 Milan, Italy, Email: stefano.capra@unimi.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000470063800026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4042
Permanent link to this record
 

 
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J.
Title Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 764 Issue Pages 241-246
Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy
Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000341987000030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1929
Permanent link to this record
 

 
Author Affolder, A. et al; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Miñano, M.; Soldevila, U.
Title Silicon detectors for the sLHC Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 658 Issue 1 Pages 11-16
Keywords Silicon particle detectors; Radiation damage; Irradiation; Charge collection efficiency
Abstract In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages.
Address [Barber, T.; Breindl, M.; Driewer, A.; Koehler, M.; Kuehn, S.; Parzefall, U.; Preiss, J.; Walz, M.; Wiik, L.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany, Email: Ulrich.Parzefall@physik.uni-freiburg.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000297783300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 836
Permanent link to this record
 

 
Author Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasche, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pitta, G.; Puggioni, P.; Rosso, E.; Verdu-Andres, S.; Wegner, R.; Weiss, M.; Zennaro, R.
Title Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 620 Issue 2-3 Pages 563-577
Keywords Medical accelerators; Linac; Cyclotron; Synchrotron; Cyclinac; Radiation oncology; Hadrontherapy; Particle therapy; Proton therapy; Carbon ion therapy; Dose delivery
Abstract Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.
Address [Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasche, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pitta, G.; Puggioni, P.; Rosso, E.; Andres, S. Verdu; Wegner, R.; Weiss, M.; Zennaro, R.] TERA Fdn, Novara, Italy, Email: Saverio.Braccini@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000280601700058 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 401
Permanent link to this record
 

 
Author Rodriguez-Alvarez, M.J.; Sanchez, F.; Soriano, A.; Iborra, A.; Mora, C.
Title Exploiting symmetries for weight matrix design in CT imaging Type Journal Article
Year 2011 Publication Mathematical and Computer Modelling Abbreviated Journal Math. Comput. Model.
Volume 54 Issue 7-8 Pages 1655-1664
Keywords Computerized tomography imaging; Polar grid; System matrix; Rotation symmetries; ART
Abstract In this paper we propose several methods of constructing the system matrix (SM) of a Computed Tomography (CT) scanner with two objectives: (1) to construct SMs in the shortest possible time and store them in an ordinary PC without losing quality, (2) to analyze the possible applications of the proposed method to 3D, taking into account SMs' sizes, computing time and reconstructed image quality. In order to build the SM, we propose two new field of view (FOV) pixellation schemes, based on a polar coordinate system (polar grid) by taking advantage of the polar rotation symmetries of CT devices. Comparisons between the SMs proposed are performed using two phantom and a real CT-simulator images. Global error, contrast, noise and homogeneity of the reconstructed images are discussed.
Address [Rodriguez-Alvarez, MJ; Iborra, A; Mora, C] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain, Email: mjrodri@imm.upv.es
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0895-7177 ISBN Medium
Area Expedition Conference
Notes WOS:000293269200007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 708
Permanent link to this record
 

 
Author Mendez, V.; Amoros, G.; Garcia, F.; Salt, J.
Title Emergent algorithms for replica location and selection in data grid Type Journal Article
Year 2010 Publication Future Generation Computer Systems Abbreviated Journal Futur. Gener. Comp. Syst.
Volume 26 Issue 7 Pages 934-946
Keywords Grid computing; Algorithms; Optimization methods; Artificial intelligence
Abstract Grid infrastructures for e-Science projects are growing in magnitude terms. Improvements in data Grid replication algorithms may be critical in many of these infrastructures. This paper shows a decentralized replica optimization service, providing a general Emergent Artificial Intelligence (EAI) algorithm for the problem definition. Our aim is to set up a theoretical framework for emergent heuristics in Grid environments. Further, we describe two EAI approaches, the Particle Swarm Optimization PSO-Grid Multiswarm Federation and the Ant Colony Optimization ACO-Grid Asynchronous Colonies Optimization replica optimization algorithms, with some examples. We also present extended results with best performance and scalability features for PSO-Grid Multiswarrn Federation.
Address [Mendez Munoz, Victor; Amoros Vicente, Gabriel; Salt Cairols, Jose] CSIC, Grid & E Sci Grp, Inst Fis Corpuscular IFIC, Mixed Inst, E-46071 Valencia, Spain, Email: vmendez@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-739x ISBN Medium
Area Expedition Conference
Notes ISI:000279804200004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 411
Permanent link to this record
 

 
Author Trbojevich, R.A.; Fernandez, A.; Watanabe, F.; Mustafa, T.; Bryant, M.S.
Title Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells Type Journal Article
Year 2016 Publication Journal of Nanoparticle Research Abbreviated Journal J. Nanopart. Res.
Volume 18 Issue 3 Pages 55 - 12pp
Keywords Membranes; Silver nanoparticles; Diffusion cells; Food packaging; Permeation; Environmental and health effects
Abstract Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 lm pore diameter 125 μm thick synthetic cellulose membranes, and 16 and 120 μm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.
Address [Trbojevich, Raul A.; Bryant, Matthew S.] US FDA, Div Biochem Toxicol, Natl Ctr Toxicol Res, 3900 NCTR Rd, Jefferson, AR 72079 USA, Email: velifdez@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-0764 ISBN Medium
Area Expedition Conference
Notes WOS:000387044400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2849
Permanent link to this record
 

 
Author Assam, I.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Poppe, B.; Siebert, F.A.
Title Evaluation of dosimetric effects of metallic artifact reduction and tissue assignment on Monte Carlo dose calculations for I-125 prostate implants Type Journal Article
Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 49 Issue Pages 6195-6208
Keywords metallic artifact reduction; Monte Carlo dosimetry; post-implant CT; prostate brachytherapy; tissue assignment schemes; voxelized virtual patient model
Abstract Purpose Monte Carlo (MC) simulation studies, aimed at evaluating the magnitude of tissue heterogeneity in I-125 prostate permanent seed implant brachytherapy (BT), customarily use clinical post-implant CT images to generate a virtual representation of a realistic patient model (virtual patient model). Metallic artifact reduction (MAR) techniques and tissue assignment schemes (TAS) are implemented on the post-implant CT images to mollify metallic artifacts due to BT seeds and to assign tissue types to the voxels corresponding to the bright seed spots and streaking artifacts, respectively. The objective of this study is to assess the combined influence of MAR and TAS on MC absorbed dose calculations in post-implant CT-based phantoms. The virtual patient models used for I-125 prostate implant MC absorbed dose calculations in this study are derived from the CT images of an external radiotherapy prostate patient without BT seeds and prostatic calcifications, thus averting the need to implement MAR and TAS. Methods The geometry of the IsoSeed I25.S17plus source is validated by comparing the MC calculated results of the TG-43 parameters for the line source approximation with the TG-43U1S2 consensus data. Four MC absorbed dose calculations are performed in two virtual patient models using the egs_brachy MC code: (1) TG-43-based D-w,w-TG(43), (2) D-w,D-w-MBDC that accounts for interseed scattering and attenuation (ISA), (3) D-m,D-m that examines ISA and tissue heterogeneity by scoring absorbed dose in tissue, and (4) D-w,D-m that unlike D-m,D-m scores absorbed dose in water. The MC absorbed doses (1) and (2) are simulated in a TG-43 patient phantom derived by assigning the densities of every voxel to 1.00 g cm(-3) (water), whereas MC absorbed doses (3) and (4) are scored in the TG-186 patient phantom generated by mapping the mass density of each voxel to tissue according to a CT calibration curve. The MC absorbed doses calculated in this study are compared with VariSeed v8.0 calculated absorbed doses. To evaluate the dosimetric effect of MAR and TAS, the MC absorbed doses of this work (independent of MAR and TAS) are compared to the MC absorbed doses of different I-125 source models from previous studies that were calculated with different MC codes using post-implant CT-based phantoms generated by implementing MAR and TAS on post-implant CT images. Results The very good agreement of TG-43 parameters of this study and the published consensus data within 3% validates the geometry of the IsoSeed I25.S17plus source. For the clinical studies, the TG-43-based calculations show a D-90 overestimation of more than 4% compared to the more realistic MC methods due to ISA and tissue composition. The results of this work generally show few discrepancies with the post-implant CT-based dosimetry studies with respect to the D-90 absorbed dose metric parameter. These discrepancies are mainly Type B uncertainties due to the different I-125 source models and MC codes. Conclusions The implementation of MAR and TAS on post-implant CT images have no dosimetric effect on the I-125 prostate MC absorbed dose calculation in post-implant CT-based phantoms.
Address [Assam, Isong; Siebert, Frank-Andre] UKSH, Clin Radiotherapy Radiooncol, Campus Kiel, Kiel, Germany, Email: Isong.Assam@uksh.de
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000835807200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5321
Permanent link to this record