|   | 
Details
   web
Records
Author Ma, E.; De Romeri, V.
Title Radiative seesaw dark matter Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 5 Pages 055004 - 5pp
Keywords
Abstract The singlet Majoron model of seesaw neutrino mass is appended by one dark Majorana fermion singlet chi with L = 2 and one dark complex scalar singlet zeta with L = 1. This simple setup allows chi to obtain a small radiative mass anchored by the same heavy right-handed neutrinos, whereas the one-loop decay of the standard model Higgs boson to chi chi + (chi) over bar(chi) over bar provides the freeze-in mechanism for chi to be the light dark matter of the Universe.
Address [Ma, Ernest] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000693636500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4959
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Search for CP violation in Xi(-)(b) -> pK(-)K(-) decays Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 5 Pages 052010 - 29pp
Keywords
Abstract A search for CP violation in charmless three-body Xi(-)(b) -> pK(-)K(-) decays is performed using pp collision data recorded with the LHCb detector, corresponding to integrated luminosities of 1 fb(-1) at a center-of-mass energy root S = 7 TeV, 2 fb(-1) at root S = 8 TeV and 2 fb(-1) at = 13 TeV. A good description of the phase-space distribution is obtained with an amplitude model containing contributions from Sigma(1385), Lambda(1405), Lambda(1520), Lambda(1670), Sigma(1775) and Sigma(1915) resonances. The model allows for CP violation effects, which are found to be consistent with zero. The branching fractions of Xi(-)(b) -> Sigma(1385)K-, Xi(-)(b) -> Lambda(1405)K-, Xi(-)(b) -> Lambda(1520)K-, Xi(-)(b) -> Lambda(1670)K-, Xi(-)(b) -> Sigma(1775)K- and Xi(-)(b) -> Sigma(1915)K- decays arc also reported. In addition, an upper limit is placed on the product of ratios of Omega(-)(b) and Xi(-)(b) fragmentation fractions and the Omega(-)(b) -> pK(-)K(-) and Xi(-)(b) -> pK(-)K(-) branching fractions.
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000704615700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5000
Permanent link to this record
 

 
Author Ferreiro, A.; Nadal-Gisbert, S.; Navarro-Salas, J.
Title Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 2 Pages 025003 - 8pp
Keywords
Abstract The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar field, all the beta function exhibit decoupling, including also the gravitational ones. For a quantized Dirac field, decoupling appears almost for all the beta functions. We obtain the anomalous result that the mass of the background scalar field does not decouple.
Address [Ferreiro, Antonio; Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000669563900006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4896
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Search for pseudoscalar bosons decaying into e(+)e(-) pairs in the NA64 experiment at the CERN SPS Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 11 Pages L111102 - 5pp
Keywords
Abstract We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e(+) e(-) perfbnned using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e(+) e(-) pairs in the nuclear transitions of Be-8 and 4 He nuclei at the invariant mass similar or equal to 17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the “visible mode” configuration with a total statistics corresponding to 8.4 x 10(10) electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter epsilon we also used the data collected in 2016-2018 in the “invisible mode” configuration of NA64 with a total statistics corresponding to 2.84 x 10(11) EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to gamma). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space m(a) – epsilon in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of epsilon in the range 2.1 x 10(-4) < epsilon < 3.2 x 10(-4) are excluded.
Address [Hoesgen, M.; Ketzer, B.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000738796900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5071
Permanent link to this record
 

 
Author Das, A.; Bhupal Dev, P.S.; Hosotani, Y.; Mandal, S.
Title Probing the minimal U(1)(X) model at future electron positron colliders via fermion pair-production channels Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 11 Pages 115030 - 28pp
Keywords
Abstract The minimal U(1)(X) extension of the Standard Model (SM) is a well-motivated new physics scenario, where anomaly cancellation dictates new neutral gauge boson (Z') couplings with the SM fermions in terms of the U(1)(X) charges of the new scalar fields. We investigate the SM charged fermion pair-production process for different values of these U(1)(X) charges at future e(-)e(+) colliders: e(+)e(-) -> f (f) over bar Apart from the standard gamma and Z-mediated processes, this model features additional s-channel (or both s and t-channel when f = e(-)) Z' exchange which interferes with the SM processes. We first estimate the bounds on the U(1)(X) coupling (g') and the Z' mass (M-Z') considering the latest dilepton and dijet constraints from the heavy resonance searches at the LHC. Then using the allowed values of g', we study the angular distributions, forward-backward (A(FB)), left-right (A(LB)), and left-right forward-backward (A(LR-FB)) asymmetries of the final states. We fmd that these observables can show substantial deviations from the SM results in the U(1)(X) model, thus providing a powerful probe of the multi-TeV Z' bosons at future e(+)e(-) colliders.
Address [Das, Arindam] Kyungpook Natl Univ, Dept Phys, Daegu 41566, South Korea, Email: arindamdas@oia.hokudai.ac.jp;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000822972700011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5283
Permanent link to this record