toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Muñoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G. doi  openurl
  Title Influence of the background in Compton camera images for proton therapy treatment monitoring Type Journal Article
  Year 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 68 Issue 14 Pages 144001 - 16pp  
  Keywords Compton imaging; Compton camera; proton therapy; treatment monitoring; Monte Carlo simulation; image reconstruction; background  
  Abstract Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.  
  Address [Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Munoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.] Inst Fis Corpuscular IFIC, CSIC UV, Valencia, Spain, Email: Marina.Borja@csic.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022671300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5571  
Permanent link to this record
 

 
Author Borys, D. et al; Brzezinski, K. doi  openurl
  Title ProTheRaMon-a GATE simulation framework for proton therapy range monitoring using PET imaging Type Journal Article
  Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 67 Issue 22 Pages 224002 - 15pp  
  Keywords proton therapy; GATE; Monte Carlo simulations; J-PET; medical imaging  
  Abstract Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022).  
  Address [Borys, Damian] Silesian Tech Univ, Dept Syst Biol & Engn, Gliwice, Poland, Email: damin.borys@polsl.pl  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000885248200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5416  
Permanent link to this record
 

 
Author Roser, J.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Muñoz, E.; Ros, A.; Viegas, R.; Llosa, G. doi  openurl
  Title Joint image reconstruction algorithm in Compton cameras Type Journal Article
  Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 67 Issue 15 Pages 155009 - 15pp  
  Keywords Compton camera; compton imaging; hadron therapy; image reconstruction; LM-MLEM; Monte Carlo simulations; multi-layer compton telescope  
  Abstract Objective. To demonstrate the benefits of using an joint image reconstruction algorithm based on the List Mode Maximum Likelihood Expectation Maximization that combines events measured in different channels of information of a Compton camera. Approach. Both simulations and experimental data are employed to show the algorithm performance. Main results. The obtained joint images present improved image quality and yield better estimates of displacements of high-energy gamma-ray emitting sources. The algorithm also provides images that are more stable than any individual channel against the noisy convergence that characterizes Maximum Likelihood based algorithms. Significance. The joint reconstruction algorithm can improve the quality and robustness of Compton camera images. It also has high versatility, as it can be easily adapted to any Compton camera geometry. It is thus expected to represent an important step in the optimization of Compton camera imaging.  
  Address [Roser, J.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Munoz, E.; Ros, A.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Jorge.Roser@ific.uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000827830200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5298  
Permanent link to this record
 

 
Author Ros Garcia, A.; Barrio, J.; Etxebeste, A.; Garcia-Lopez, J.; Jimenez-Ramos, M.C.; Lacasta, C.; Muñoz, E.; Oliver, J.F.; Roser, J.; Llosa, G. doi  openurl
  Title MACACO II test-beam with high energy photons Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 24 Pages 245027 - 12pp  
  Keywords Compton imaging; Compton camera; proton therapy; LaBr3; test-beam; image reconstruction  
  Abstract The IRIS group at IFIC Valencia is developing a three-layer Compton camera for treatment monitoring in proton therapy. The system is composed of three detector planes, each made of a LaBr3<i monolithic crystal coupled to a SiPM array. Having obtained successful results with the first prototype (MACACO) that demonstrated the feasibility of the proposed technology, a second prototype (MACACO II) with improved performance has been developed, and is the subject of this work. The new system has an enhanced detector energy resolution which translates into a higher spatial resolution of the telescope. The image reconstruction method has also been improved with an accurate model of the sensitivity matrix. The device has been tested with high energy photons at the National Accelerator Centre (CNA, Seville). The tests involved a proton beam of 18 MeV impinging on a graphite target, to produce 4.4 MeV photons. Data were taken at different system positions of the telescope with the first detector at 65 and 160 mm from the target, and at different beam intensities. The measurements allowed successful reconstruction of the photon emission distribution at two target positions separated by 5 mm in different telescope configurations. This result was obtained both with data recorded in the first and second telescope planes (two interaction events) and, for the first time in beam experiments, with data recorded in the three planes (three interaction events).  
  Address [Ros Garcia, A.; Barrio, J.; Etxebeste, A.; Lacasta, C.; Munoz, E.; Oliver, J. F.; Roser, J.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: arosgar@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000600803000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4654  
Permanent link to this record
 

 
Author Roser, J.; Muñoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J.F. doi  openurl
  Title Image reconstruction for a multi-layer Compton telescope: an analytical model for three interaction events Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 14 Pages 145005 - 17pp  
  Keywords Compton camera; Compton imaging; hadron therapy; image reconstruction; lm-mlem; monte carlo simulations; multi-layer Compton telescope  
  Abstract Compton Cameras are electronically collimated photon imagers suitable for sub-MeV to few MeV gamma-ray detection. Such features are desirable to enablein vivorange verification in hadron therapy, through the detection of secondary Prompt Gammas. A major concern with this technique is the poor image quality obtained when the incoming gamma-ray energy is unknown. Compton Cameras with more than two detector planes (multi-layer Compton Cameras) have been proposed as a solution, given that these devices incorporate more signal sequences of interactions to the conventional two interaction events. In particular, three interaction events convey more spectral information as they allow inferring directly the incident gamma-ray energy. A three-layer Compton Telescope based on continuous Lanthanum (III) Bromide crystals coupled to Silicon Photomultipliers is being developed at the IRIS group of IFIC-Valencia. In a previous work we proposed a spectral reconstruction algorithm for two interaction events based on an analytical model for the formation of the signal. To fully exploit the capabilities of our prototype, we present here an extension of the model for three interaction events. Analytical expressions of the sensitivity and the System Matrix are derived and validated against Monte Carlo simulations. Implemented in a List Mode Maximum Likelihood Expectation Maximization algorithm, the proposed model allows us to obtain four-dimensional (energy and position) images by using exclusively three interaction events. We are able to recover the correct spectrum and spatial distribution of gamma-ray sources when ideal data are employed. However, the uncertainties associated to experimental measurements result in a degradation when real data from complex structures are employed. Incorrect estimation of the incident gamma-ray interaction positions, and missing deposited energy associated with escaping secondaries, have been identified as the causes of such degradation by means of a detailed Monte Carlo study. As expected, our current experimental resolution and efficiency to three interaction events prevents us from correctly recovering complex structures of radioactive sources. However, given the better spectral information conveyed by three interaction events, we expect an improvement of the image quality of conventional Compton imaging when including such events. In this regard, future development includes the incorporation of the model assessed in this work to the two interaction events model in order to allow using simultaneously two and three interaction events in the image reconstruction.  
  Address [Roser, J.; Munoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J. F.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: Jorge.Roser@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000552701600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva