toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Rossi, R.R.; Sanchez Garcia, G.; Tortola, M. url  doi
openurl 
  Title Probing nuclear properties and neutrino physics with current and future CEνNS experiments Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 9 Pages 095044 - 17pp  
  Keywords  
  Abstract The recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) with neutrinos from pion decay at rest (N-DAR) sources by the COHERENT Collaboration has raised interest in this process in the search for new physics. Unfortunately, current uncertainties in the determination of nuclear parameters relevant to those processes can hide new physics effects. This is not the case for processes involving lower-energy neutrino sources such as nuclear reactors. Note, however, that a CEvNS measurement with reactor neutrinos depends largely on a (still-missing) precise determination of the quenching factor at very low energies, making its observation more challenging. In the upcoming years, once this signal is confirmed, a combined analysis of N-DAR and reactor CEvNS experiments will be very useful to probe particle and nuclear physics, with a reduced dependence on nuclear uncertainties. In this work, we explore this idea by simultaneously testing the sensitivity of current and future CEvNS experiments to neutrino nonstandard interactions (NSIs) and the neutron root mean square (rms) radius, considering different neutrino sources as well as several detection materials. We show how the interplay between future reactor and accelerator CEvNS experiments can help to get robust constraints on the neutron rms and to break degeneracies between the NSI parameters. Our forecast could be used as a guide to optimize the experimental sensitivity to the parameters under study.  
  Address [Rossi, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: gsanchez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001238451900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6149  
Permanent link to this record
 

 
Author Navarro, P.; Gimeno, B.; Monzo-Cabrera, J.; Diaz-Morcillo, A.; Blas, D. url  doi
openurl 
  Title Study of a cubic cavity resonator for gravitational waves detection in the microwave frequency range Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 104048 - 19pp  
  Keywords  
  Abstract The direct detection of gravitational waves (GWs) of frequencies above MHz has recently received considerable attention. In this work, we present a precise study of the reach of a cubic cavity resonator to GWs in the microwave range, using for the first time tools allowing to perform realistic simulations. Concretely, the boundary integral -resonant mode expansion (BI-RME) 3D method, which allows us to obtain not only the detected power but also the detected voltage (magnitude and phase), is used here. After analyzing three cubic cavities for different frequencies and working simultaneously with three different degenerate modes at each cavity, we conclude that the sensitivity of the experiment is strongly dependent on the polarization and incidence angle of the GW. The presented experiment can reach sensitivities up to 1 x 10 – 19 at 100 MHz, 2 x 10 – 20 at 1 GHz, and 6 x 10 – 19 at 10 GHz for optimal angles and polarizations, and where in all cases we assumed an integration time of Delta t 1 / 4 1 ms. These results provide a strong case for further developing the use of cavities to detect GWs. Moreover, the possibility of analyzing the detected voltage (magnitude and phase) opens a new interferometric detection scheme based on the combination of the detected signals from multiple cavities.  
  Address [Navarro, Pablo; Monzo-Cabrera, Juan; Diaz-Morcillo, Alejandro] Univ Politecn Cartagena, Dept Tecnol Informac & Comunicac, Plaza Hosp 1, Cartagena 30302, Spain, Email: pablonm.ct.94@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001239272400007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6152  
Permanent link to this record
 

 
Author Lessa, L.A.; Maluf, R.V.; Silva, J.E.G.; Almeida, C.A.S. url  doi
openurl 
  Title Braneworlds in warped Einsteinian cubic gravity Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 123 - 25pp  
  Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; gravity; modified gravity  
  Abstract Einstenian cubic gravity (ECG) is a modified theory of gravity constructed with cubic contractions of the curvature tensor. This theory has the remarkable feature of having the same two propagating degrees of freedom of Einstein gravity (EG), at the perturbative level on maximally symmetric spacetimes. The additional unstable modes steaming from the higher order derivative dynamics are suppressed provided that we consider the ECG as an effective field theory wherein the cubic terms are seen as perturbative corrections of the Einstein -Hilbert term. Extensions of ECG have been proposed in cosmology and compact objects in order to probe if this property holds in more general configurations. In this work, we construct a modified ECG gravity in a five dimensional warped braneworld scenario. By assuming a specific combination of the cubic parameters, we obtained modified gravity equations of motion with terms up to second -order. For a thin 3-brane, the cubic -gravity corrections yield an effective positive bulk cosmological constant. Thus, in order to keep the 5D bulk warped compact, an upper bound of the cubic parameter with respect to the bulk curvature was imposed. For a thick brane, the cubic -gravity terms modify the scalar field potential and its corresponding vacuum. Nonetheless, the domain -wall structure with a localized source is preserved. At the perturbative level, the Kaluza-Klein (KK) tensor gravitational modes are stable and possess a localized massless mode provided the cubic corrections are small compared to the EG braneworld.  
  Address [Lessa, L. A.; Maluf, R. V.; Silva, J. E. G.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pici, BR-60455760 Fortaleza, CE, Brazil, Email: leandrolessa@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001240966600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6164  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Saibel, A.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Study of High-Transverse-Momentum Higgs Boson Production in Association with a Vector Boson in the qqbb Final State with the ATLAS Detector Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 13 Pages 131802 - 23pp  
  Keywords  
  Abstract This Letter presents the first study of Higgs boson production in association with a vector boson (V = W or Z) in the fully hadronic qqbb final state using data recorded by the ATLAS detector at the LHC in ffiffiproton-proton collisions at root root s= 13 TeV and corresponding to an integrated luminosity of 137fb(-1). The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b-tagging properties are used to identify jets consistent with Higgs bosons decaying into b (b) over bar. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be μ= 1.4(-0.9)(+1.0) and the corresponding cross section is 3.1 +/- 1.3(stat)(-1.4)(+1.8) (syst) pb.  
  Address [Fedin, O. L.; Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Kulchitsky, Y.; Myagkov, A. G.; Nikolaenko, V.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Smirnova, L. N.; Tikhomirov, V.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202030300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6121  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I., Zhuo, J. url  doi
openurl 
  Title Amplitude Analysis of the B0 -> K*0 μ+μ- Decay Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 13 Pages 131801 - 13pp  
  Keywords  
  Abstract An amplitude analysis of the B-0 -> K*(0) mu(+)mu(-) decay is presented using a dataset corresponding to an integrated luminosity of 4.7 fb(-1) of pp collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q(2)-unbinned amplitude analysis, where q(2) is the mu(+)mu(-) invariant mass squared. Long-distance contributions, which originate from nonfactorizable QCD processes, are systematically investigated, and the most accurate assessment to date of their impact on the physical observables is obtained. The pattern of measured corrections to the short-distance couplings is found to be consistent with previous analyses of b- to s-quark transitions, with the largest discrepancy from the standard model predictions found to be at the level of 1.8 standard deviations. The global significance of the observed differences in the decay is 1.4 standard deviations.  
  Address [Dettori, F.; Fujii, Y.; Hadavizadeh, T.; Lane, J. J.; Litvinov, R.; Manca, G.; Saitta, B.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201992300011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6127  
Permanent link to this record
 

 
Author Servant, G.; Simakachorn, P. url  doi
openurl 
  Title Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 103538 - 24pp  
  Keywords  
  Abstract We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.  
  Address [Servant, Geraldine] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: peera.simakachorn@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001238459100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6150  
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Donini, A.; Molina-Terriza, G.; Monrabal, F.; Simon, A. url  doi
openurl 
  Title Towards a realistic setup for a dynamical measurement of deviations from Newton's 1/r2 law: the impact of air viscosity Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 6 Pages 596 - 20pp  
  Keywords  
  Abstract A novel experimental setup to measure deviations from the 1/r(2) distance dependence of Newtonian gravity was proposed in Donini and Marimon (Eur Phys J C 76:696, 2016). The underlying theoretical idea was to study the orbits of a microscopically-sized planetary system composed of a “Satellite”, with mass m(S) similar to O(10-9) g, and a “Planet”, with mass M-P similar to O(10-5) g at an initial distance of hundreds of microns. The detection of precession of the orbit in this system would be an unambiguous indication of a central potential with terms that scale with the distance differently from 1/r. This is a huge advantage with respect to the measurement of the absolute strength of the attraction between two bodies, as most electrically-induced background potentials do indeed scale as 1/r. Detection of orbit precession is unaffected by these effects, allowing for better sensitivities. In Baeza-Ballesteros et al. (Eur Phys J C 82:154, 2022), the impact of other subleading backgrounds that may induce orbit precession, such as, e.g., the electrical Casimir force or general relativity, was studied in detail. It was found that the proposed setup could test Yukawa-like corrections, alpha x exp(-r/lambda), to the 1/r potential with couplings as low as alpha similar to 10(-2) for distances as small as lambda similar to 10 μm, improving by roughly an order of magnitude present bounds. In this paper, we start to move from a theoretical study of the proposal to a more realistic implementation of the experimental setup. As a first step, we study the impact of air viscosity on the proposed setup and see how the setup should be modified in order to preserve the theoretical sensitivity achieved in Donini and Marimon (2016) and Baeza-Ballesteros et al. (2022).  
  Address [Baeza-Ballesteros, J.; Donini, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, Calle Catedrat Jose Beltran Martinez 2, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001243830900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6156  
Permanent link to this record
 

 
Author Gorkavenko, V.; Jashal, B.K.; Kholoimov, V.; Kyselov, Y.; Mendoza, D.; Ovchynnikov, M.; Oyanguren, A.; Svintozelskyi, V.; Zhuo, J.H. url  doi
openurl 
  Title LHCb potential to discover long-lived new physics particles with lifetimes above 100 ps Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 6 Pages 608 - 15pp  
  Keywords  
  Abstract For years, it has been believed that the main LHC detectors can play only a limited role of a lifetime frontier experiment exploring the parameter space of long-lived particles (LLPs)-hypothetical particles with tiny couplings to the Standard Model. This paper demonstrates that the LHCb experiment may become a powerful lifetime frontier experiment if it uses the new Downstream algorithm reconstructing tracks that do not allow hits in the LHCb vertex tracker. In particular, for many LLP scenarios, LHCb may be as sensitive as the proposed experiments beyond the main LHC detectors for various LLP models, including heavy neutral leptons, dark scalars, dark photons, and axion-like particles.  
  Address [Gorkavenko, Volodymyr; Kholoimov, Valerii; Kyselov, Yehor; Svintozelskyi, Volodymyr] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine, Email: gorkavol@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001246005200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6145  
Permanent link to this record
 

 
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 029 - 25pp  
  Keywords leptogenesis; dark matter theory; gravitational waves / theory  
  Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.  
  Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001246744300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6162  
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M. url  doi
openurl 
  Title First Results in the Search for Dark Sectors at NA64 with the CERN SPS High Energy Muon Beam Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 21 Pages 211803 - 7pp  
  Keywords  
  Abstract We report the first search for dark sectors performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. The signal signature consists of a single scattered muon with momentum < 80 GeV/c in the final state, accompanied by missing energy, i.e., no detectable activity in the downstream calorimeters. For a total dataset of (1.98 +/- 0.02) x 10(10) muons on target, no event is observed in the expected signal region. This allows us to set new limits on the remaining (m(Z)'; g(Z)') parameter space of a new Z' (L-mu – L-tau) vector boson which could explain the muon (g – 2)(mu) anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal dark matter relic abundance. Our results pave the way to explore dark sectors and light dark matter with muon beams in a unique and complementary way to other experiments.  
  Address [Banerjee, D.; Bernhard, J.; Charitonidis, N.; Girod, S.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: paolo.crivelli@cern.ch;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001239696000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6142  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva