toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Albiol, F.; Corbi, A.; Albiol, A. doi  openurl
  Title 3D measurements in conventional X-ray imaging with RGB-D sensors Type Journal Article
  Year 2017 Publication Medical Engineering & Physics Abbreviated Journal Med. Eng. Phys.  
  Volume 42 Issue Pages 73-79  
  Keywords X-ray; Depth cameras; Epipolar geometry; 3D reconstruction; Movement tracking; Dense surface mapping  
  Abstract A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and Xray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body.  
  Address [Albiol, Francisco; Corbi, Alberto] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain, Email: alberto.corbi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4533 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000398007100008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3043  
Permanent link to this record
 

 
Author Rodriguez-Alvarez, M.J.; Sanchez, F.; Soriano, A.; Iborra, A. doi  openurl
  Title Sparse Givens resolution of large system of linear equations: Applications to image reconstruction Type Journal Article
  Year 2010 Publication Mathematical and Computer Modelling Abbreviated Journal Math. Comput. Model.  
  Volume 52 Issue 7-8 Pages 1258-1264  
  Keywords Givens rotations; QR-factorization; Computed tomography; Image reconstruction  
  Abstract In medicine, computed tomographic images are reconstructed from a large number of measurements of X-ray transmission through the patient (projection data). The mathematical model used to describe a computed tomography device is a large system of linear equations of the form AX = B. In this paper we propose the QR decomposition as a direct method to solve the linear system. QR decomposition can be a large computational procedure. However, once it has been calculated for a specific system, matrices Q and R are stored and used for any acquired projection on that system. Implementation of the QR decomposition in order to take more advantage of the sparsity of the system matrix is discussed.  
  Address [Rodriguez-Alvarez, Maria-Jose; Iborra, Amadeo] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46022 Valencia, Spain, Email: mjrodri@imm.upv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-7177 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280933700043 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 395  
Permanent link to this record
 

 
Author Fernandez, A.; Hufschmidt, D.; Colaux, J.L.; Valiente-Dobon, J.J.; Godinho, V.; Jimenez de Haro, M.C.; Feria, D.; Gadea, A.; Lucas, S. doi  openurl
  Title Low gas consumption fabrication of He-3 solid targets for nuclear reactions Type Journal Article
  Year 2020 Publication Materials & Design Abbreviated Journal Mater. Des.  
  Volume 186 Issue Pages 108337 - 10pp  
  Keywords He-3 solid targets; Quasistatic magnetron sputtering; Low gas consumption; Nuclear reactions; Inverse kinematics; Target stability  
  Abstract Nanoporous solids that stabilize trapped gas nanobubbles open new possibilities to fabricate solid targets for nuclear reactions. A methodology is described based on the magnetron sputtering (MS) technique operated under quasistatic flux conditions to produce such nanocomposites films with He-3 contents of up to 16 at.% in an amorphous-silicon matrix. In addition to the characteristic low pressure (3-6 Pa) needed for the gas discharge, the method ensures almost complete reduction of the process gas flow during film fabrication. The method could produce similar materials to those obtained under classical dynamic flux conditions for MS. The drastic reduction (>99.5%) of the gas consumption is fundamental for the fabrication of targets with scarce and expensive gases. Si:He-3 and W:He-3 targets are presented together with their microstructural (scanning and transmission electron microscopy, SEM and TEM respectively) and compositional (Ion Beam Analysis, IBA) characterization. The He-3 content achieved was over 1 x 10(18) at/cm(2) for film thicknesses between 1.5 and 3 μm for both Si and W matrices. First experiments to probe the stability of the targets for nuclear reaction studies in inverse kinematics configurations are presented.  
  Address [Fernandez, Asuncion; Hufschmidt, Dirk; Godinho, Vanda; Jimenez de Haro, Maria C.; Feria, David] Univ Seville, CSIC, Inst Ciencia Mat Sevilla, Avda Amer Vespucio 49, Seville 41092, Spain, Email: asuncion@icmse.csic.es  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000505221700053 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4239  
Permanent link to this record
 

 
Author Carrasco-Ribelles, L.A.; Pardo-Mas, J.R.; Tortajada, S.; Saez, C.; Valdivieso, B.; Garcia-Gomez, J.M. doi  openurl
  Title Predicting morbidity by local similarities in multi-scale patient trajectories Type Journal Article
  Year 2021 Publication Journal of Biomedical Informatics Abbreviated Journal J. Biomed. Inform.  
  Volume 120 Issue Pages 103837 - 9pp  
  Keywords Patient trajectory; Risk prediction; Local alignment; Dynamic programming; Diabetes; Cardiovascular disease  
  Abstract Patient Trajectories (PTs) are a method of representing the temporal evolution of patients. They can include information from different sources and be used in socio-medical or clinical domains. PTs have generally been used to generate and study the most common trajectories in, for instance, the development of a disease. On the other hand, healthcare predictive models generally rely on static snapshots of patient information. Only a few works about prediction in healthcare have been found that use PTs, and therefore benefit from their temporal dimension. All of them, however, have used PTs created from single-source information. Therefore, the use of longitudinal multi-scale data to build PTs and use them to obtain predictions about health conditions is yet to be explored. Our hypothesis is that local similarities on small chunks of PTs can identify similar patients concerning their future morbidities. The objectives of this work are (1) to develop a methodology to identify local similarities between PTs before the occurrence of morbidities to predict these on new query individuals; and (2) to validate this methodology on risk prediction of cardiovascular diseases (CVD) occurrence in patients with diabetes. We have proposed a novel formal definition of PTs based on sequences of longitudinal multi-scale data. Moreover, a dynamic programming methodology to identify local alignments on PTs for predicting future morbidities is proposed. Both the proposed methodology for PT definition and the alignment algorithm are generic to be applied on any clinical domain. We validated this solution for predicting CVD in patients with diabetes and we achieved a precision of 0.33, a recall of 0.72 and a specificity of 0.38. Therefore, the proposed solution in the diabetes use case can result of utmost utility to secondary screening.  
  Address [Carrasco-Ribelles, Lucia A.; Pardo-Mas, Jose Ramon; Saez, Carlos; Garcia-Gomez, Juan M.] Univ Politecn Valencia, Biomed Data Sci Lab BDSLAB, Inst Tecnol Informat & Comunicac ITACA, Camino Vera S-N, Valencia 46022, Spain, Email: lucarri@etsii.upv.es;  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1532-0464 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000683527500003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4934  
Permanent link to this record
 

 
Author de Souza, P.M.; Muller, A.; Beniaich, A.; Mayer-Miebach, E.; Oehlke, K.; Stahl, M.; Greiner, R.; Fernandez, A. doi  openurl
  Title Functional properties and nutritional composition of liquid egg products treated in a coiled tube UV-C reactor Type Journal Article
  Year 2015 Publication Innovative Food Science & Emerging Technologies Abbreviated Journal Innov. Food Sci. Emerg. Technol.  
  Volume 32 Issue Pages 156-164  
  Keywords Ultraviolet; Liquid egg; Vitamins; Functional properties; Foaming; UV-C; Dean vortex  
  Abstract Pasteurization of eggs has adverse effects on nutrient composition and functionality of egg proteins. UV processing is an alternative technology with potentially fewer adverse effects as it is less intrusive. Egg white, whole egg and egg yolk vitamins (A, B-2, B-5, C and E), minerals (P, Cl, K, Na, Ca, Mg, Fe and Zn) and main secondary metabolites (lutein and zeaxanthin) were examined after exposure to UV in a coiled tube UV-C reactor at doses known to achieve microbiologically stable egg fractions. The studied nutrients were fairly stable to a treatment with UVC light with the exception of retinal, vitamin C and carotenoids, which showed loses up to 80%, 66% and 61%, respectively. Moreover, the functional properties of ultraviolet-treated eggs were investigated. Results showed a positive impact on the foam ability and foam stability, and an increase on the emulsifying activity index above 20% versus pasteurized samples. Processing with UV can maintain most of the egg nutritive properties, and retain or even improve the technological properties of foaming and emulsification in eggs. Industrial relevance:: This novel UV-C system can be applied successfully to the Food Industry. UV-C does not impair nutritional damage to egg-treated products, and even improve egg functional properties.  
  Address [Mendes de Souza, Poliana; Fernandez, Avelina] Inst Agroquim & Tecnol Alimentos, CSIC, Dept Conservat & Qual, Paterna 46980, Spain, Email: poliana.souza@ict.ufvjm.edu.br  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8564 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000366764200019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2506  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Oliver, S. doi  openurl
  Title PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE Type Journal Article
  Year 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 267 Issue Pages 108065 - 12pp  
  Keywords Radiation transport; Monte Carlo simulation; Electron-photon showers; Parallel computing; MPI; Medical physics  
  Abstract Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kinds of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, standalone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming language and takes advantage of modern object-oriented technologies. In addition, PenRed offers the capability to read and process DICOM images as well as to construct and simulate image-based voxelized geometries, so as to facilitate its usage in medical applications. Our framework has been successfully verified against the original PENELOPE Fortran code. Furthermore, the implemented parallelism has been tested showing a significant improvement in the simulation time without any loss in precision of results. Program summary Program title: PenRed: Parallel Engine for Radiation Energy Deposition. CPC Library link to program files: https://doi .org /10 .17632/rkw6tvtngy.1 Licensing provision: GNU Affero General Public License (AGPL). Programming language: C++ standard 2011. Nature of problem: Monte Carlo simulations usually require a huge amount of computation time to achieve low statistical uncertainties. In addition, many applications necessitate particular characteristics or the extraction of specific quantities from the simulation. However, most available Monte Carlo codes do not provide an efficient parallel and truly modular structure which allows users to easily customise their code to suit their needs without an in-depth knowledge of the code system. Solution method: PenRed is a fully parallel, modular and customizable framework for Monte Carlo simulations of the passage of radiation through matter. It is based on the PENELOPE [1] code system, from which inherits its unique physics models and tracking algorithms for charged particles. PenRed has been coded in C++ following an object-oriented programming paradigm restricted to the C++11 standard. Our engine implements parallelism via a double approach: on the one hand, by using standard C++ threads for shared memory, improving the access and usage of the memory, and, on the other hand, via the MPI standard for distributed memory infrastructures. Notice that both kinds of parallelism can be combined together in the same simulation. Moreover, both threads and MPI processes, can be balanced using the builtin load balance system (RUPER-LB [30]) to maximise the performance on heterogeneous infrastructures. In addition, PenRed provides a modular structure with methods designed to easily extend its functionality. Thus, users can create their own independent modules to adapt our engine to their needs without changing the original modules. Furthermore, user extensions will take advantage of the builtin parallelism without any extra effort or knowledge of parallel programming. Additional comments including restrictions and unusual features: PenRed has been compiled in linux systems withg++ of GCC versions 4.8.5, 7.3.1, 8.3.1 and 9; clang version 3.4.2 and intel C++ compiler (icc) version 19.0.5.281. Since it is a C++11-standard compliant code, PenRed should be able to compile with any compiler with C++11 support. In addition, if the code is compiled without MPI support, it does not require any non standard library. To enable MPI capabilities, the user needs to install whatever available MPI implementation, such as openMPI [24] or mpich [25], which can be found in the repositories of any linux distribution. Finally, to provide DICOM processing support, PenRed can be optionally compiled using the dicom toolkit (dcmtk) [32] library. Thus, PenRed has only two optional dependencies, an MPI implementation and the dcmtk library.  
  Address [Gimenez-Alventosa, V] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Ctr Mixto CSIC, Cami Vera S-N, Valencia 46022, Spain, Email: vicent.gimenez@i3m.upv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000678508900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4907  
Permanent link to this record
 

 
Author Menjo, H. et al; Faus-Golfe, A.; Velasco, J. doi  openurl
  Title Monte Carlo study of forward pi(0) production spectra to be measured by the LHCf experiment for the purpose of benchmarking hadron interaction models at 10(17) eV Type Journal Article
  Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 34 Issue 7 Pages 513-520  
  Keywords High energy cosmic rays; LHC; LHCf; High energy pi(0) production spectra  
  Abstract The LHCf experiment aims to improve knowledge of forward neutral particle production spectra at the LHC energy which is relevant for the interpretation of air shower development of high energy cosmic rays. Two detectors, each composed of a pair of sampling and imaging calorimeters, have been installed at the forward region of IP1 to measure pi(0) energy spectra above 600 GeV. In this paper, we present a Monte Carlo study of the pi(0) measurements to be performed with one of the LHCf detectors for proton-proton collisions at root s = 14 TeV. In approximately 40 min of operation at luminosity 0.8 x 10(29) cm(-2) s(-1) during the beam commissioning phase of LHC, about 1.5 x 10(4) pi(0) events are expected to be obtained at two transverse positions of the detector. The backgrounds from interactions of secondary particles with beam pipes and interactions of beam particles with residual gas in the beam pipes are expected to be less than 0.1% of the signal from pi(0)s. We also discuss the capability of LHCf measurements to discriminate between the various hadron interaction models that are used for simulation of high energy air showers, such as DPMJET3.03, QGSJETII-03, SIBYLL2.1 and EPOS1.99.  
  Address [Menjo, H.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Papini, P.; Ricciarini, S.; Viciani, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy, Email: menjo@fi.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287955500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 596  
Permanent link to this record
 

 
Author Garcia Canal, C.A.; Tarutina, T.; Vento, V. doi  openurl
  Title Analysis of Nuclear Effects in Structure Functions and Their Connection with the Binding Energy of Nuclei Type Journal Article
  Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.  
  Volume 53 Issue 6 Pages 161 - 8pp  
  Keywords Structure functions; Deep inelastic scattering; EMC effect; Nuclear dynamics  
  Abstract We describe nuclear effects in structure functions of nuclei in DIS by means of a multiplicative factor beta(A)(x) which differentiates the structure function of the bound nucleons from that of the free nucleons. Our analysis determines that beta(A)(x) establishes a relation between the quark-gluon dynamics expressed by the bound nucleon structure functions and the nuclear dynamics as described by the well-known semi-empirical Bethe-Weizsacker mass formula. This relation corroborates a connection between the underlying quark-gluon dynamics and the phenomenological nuclear dynamics.  
  Address [Canal, C. A. Garcia] Univ La Plata, Dept Phys, Cc 67, RA-1900 La Plata, Argentina, Email: ttarutina@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0103-9733 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001087936700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5766  
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A. doi  openurl
  Title Evaluation of modern camera calibration techniques for conventional diagnostic X-ray imaging settings Type Journal Article
  Year 2017 Publication Radiological Physics and Technology Abbreviated Journal Radiol. Phys. Technol.  
  Volume 10 Issue 1 Pages 68-81  
  Keywords Conventional X-ray camera calibration; Detector resolution; Intrinsic and extrinsic parameters; Zhang's method; Direct linear transform; Tsai's approach  
  Abstract We explore three different alternatives for obtaining intrinsic and extrinsic parameters in conventional diagnostic X-ray frameworks: the direct linear transform (DLT), the Zhang method, and the Tsai approach. We analyze and describe the computational, operational, and mathematical background differences for these algorithms when they are applied to ordinary radiograph acquisition. For our study, we developed an initial 3D calibration frame with tin cross-shaped fiducials at specific locations. The three studied methods enable the derivation of projection matrices from 3D to 2D point correlations. We propose a set of metrics to compare the efficiency of each technique. One of these metrics consists of the calculation of the detector pixel density, which can be also included as part of the quality control sequence in general X-ray settings. The results show a clear superiority of the DLT approach, both in accuracy and operational suitability. We paid special attention to the Zhang calibration method. Although this technique has been extensively implemented in the field of computer vision, it has rarely been tested in depth in common radiograph production scenarios. Zhang's approach can operate on much simpler and more affordable 2D calibration frames, which were also tested in our research. We experimentally confirm that even three or four plane-image correspondences achieve accurate focal lengths.  
  Address [Albiol, Francisco; Corbi, Alberto] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: alberto.corbi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Japan Kk Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1865-0333 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405867100009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3238  
Permanent link to this record
 

 
Author Alioli, S.; Fuster, J.; Irles Quiles, A.; Moch, S.; Uwer, P.; Vos, M. doi  openurl
  Title A new observable to measure the top quark mass at hadron colliders Type Journal Article
  Year 2012 Publication Pramana-Journal of Physics Abbreviated Journal Pramana-J. Phys.  
  Volume 79 Issue 4 Pages 809-812  
  Keywords Top quark; mass; pole mass; NLO; cross-section; t(t)over-bar plus jet; POWHEG; perturbative QCD  
  Abstract The t (t) over bar + jet + X differential cross-section in proton-proton collisions at 7 TeV centre of mass energy is investigated with respect to its sensitivity to the top quark mass. The analysis includes higher order QCD corrections at NLO. The impact of the renormalization scale (mu(R)), the factorization (mu(F)) scale and of the choice of different proton's PDF (parton distribution function) has been evaluated. In this study it is concluded that differential jet rates offer a promising option for alternative mass measurements of the top quark, with theoretical uncertainties below 1 GeV.  
  Address [Fuster, Juan; Irles, Adrian; Vos, Marcel] Univ Valencia, Ctr Mixte, CSIC, IFIC, E-46071 Valencia, Spain, Email: airqui@ific.uv.es  
  Corporate Author Thesis  
  Publisher Indian Acad Sciences Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4289 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310875900021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1200  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva