ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Castillo, F. L., Castillo Gimenez, V., et al. (2023). Measurement of the production of a W boson in association with a charmed hadron in pp collisions at root s=13 TeV with the ATLAS detector . Phys. Rev. D, 108(3), 032012–54pp.
Abstract: The production of a W boson in association with a single charm quark is studied using 140 fb(-1) of vS = 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. ffiffis The charm quark is tagged by the presence of a charmed hadron reconstructed with a secondary-vertex fit. The W boson is reconstructed from the decay to either an electron or a muon and the missing transverse momentum present in the event. The charmed mesons reconstructed are D+ ?K-p+p+ and D*+ ? D0p+ ? (K-p+)p+ and the charge conjugate decays in the fiducial regions where pT(e; mu) > 30 GeV, l?(e; mu)l < 2.5, pT(D(*)) > 8 GeV, and l?(D(*))l < 2.2. The integrated and normalized differential cross sections as a function of the pseudorapidity of the lepton from the W boson decay, and of the transverse momentum of the charmed hadron, are extracted from the data using a profile likelihood fit. The measured total fiducial cross sections are sfidOS-SS(W- + D+) = 50.2 + 0.2(stat)+2.4 -2.3(syst) pb, s(OS-SS) (fid)(W- + D+) = 48.5 + 0.2(stat)+2.3-2.2(syst) pb, sfidOS-SS(W- + D*+) = 51.1 + 0.4(stat)+1.9 -1.8 (syst) pb, and s(OS-SS) (fid)(W+ + D*-) = 50.0 + 0.4(stat)+1.9 -1.8 (syst) pb. Results are compared with the predictions of next-to-leading-order quantum chromodynamics calculations performed using state-of-the-art parton distribution functions. Additionally, the ratio of charm to anticharm production cross sections is studied to probe the s -s- quark asymmetry. The ratio is found to be R+ c = 0.971 + 0.006(stat) + 0.011(syst). The ratio and cross-section measurements are consistent with the predictions obtained with parton distribution function sets that have a symmetric s -s- sea, indicating that any s -s- asymmetry in the Bjorken-x region relevant for this measurement is small.
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., et al. (2023). Search for flavor-changing neutral-current couplings between the top quark and the Z boson with proton-proton collisions at √s=13 TeV with the ATLAS detector. Phys. Rev. D, 108(3), 032019–34pp.
Abstract: A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark, and a Z boson is presented, using proton-proton collision data at root s = 13 TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed data set corresponds to an integrated luminosity of 139 fb(-1). The search targets both single-top- quark events produced as gq -> tZ (with q = u, c) and top-quark-pair events, with one top quark decaying through the t -> Zq channel. The analysis considers events with three leptons (electrons or muons), a b-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the t -> Zq branching ratios, assuming only tensor operators of the Standard Model effective field theory framework contribute to the tZq vertices. These are 6.2 x 10(-5) (13 x 10(-5)) for t -> Zu (t -> Zc) for a left-handed tZq coupling, and 6.6 x 10(-5) (12 x 10(-5)) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of the corresponding couplings, yielding limits for |C-uW((13))*| and |C-uB((13))*| (|C-uW((31))| and |C-uB((31))|) of 0.15 (0.16), and limits for |C-uW((23))*| and |C-uB((23))*| (|C-uW((32))| and |C-uB((32))|) of 0.22 (0.21), assuming a new-physics energy scale Lambda(NP) of 1 TeV.
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., Cabrera Urban, S., et al. (2023). Search for nonresonant pair production of Higgs bosons in the b b-bar b b-bar final state in pp collisions at √s=13 TeV with the ATLAS detector. Phys. Rev. D, 108(5), 052003–38pp.
Abstract: A search for nonresonant Higgs boson pair production in the b (b) over barb (b) over bar final state is presented. The analysis uses 126 fb(-1) of pp collision data at root s = 13 TeV collected with the ATLAS detector at the Large Hadron Collider, and targets both the gluon-gluon fusion and vector-boson fusion production modes. No evidence of the signal is found and the observed (expected) upper limit on the cross section for nonresonant Higgs boson pair production is determined to be 5.4 (8.1) times the Standard Model predicted cross section at 95% confidence level. Constraints are placed on modifiers to the HHH and HHVV couplings. The observed (expected) 2 sigma constraints on the HHH coupling modifier, kappa(lambda), are determined to be [-3.5, 11.3] ([-5.4, 11.4]), while the corresponding constraints for the HHVV coupling modifier, kappa(2V), are [-0.0, 2.1] ([-0.1, 2.1]). In addition, constraints on relevant coefficients are derived in the context of the Standard Model effective field theory and Higgs effective field theory, and upper limits on the HH production cross section are placed in seven Higgs effective field theory benchmark scenarios.
|
Di Valentino, E., Gariazzo, S., Giare, W., Melchiorri, A., Mena, O., & Renzi, F. (2023). Novel model-marginalized cosmological bound on the QCD axion mass. Phys. Rev. D, 107(10), 103528–16pp.
Abstract: We present model-marginalized limits on mixed hot dark matter scenarios, which consider both thermal neutrinos and thermal QCD axions. A novel aspect of our analyses is the inclusion of small-scale cosmic microwave background (CMB) observations from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), together with those from the Planck satellite and baryon acoustic oscillation (BAO) data. After marginalizing over a number of well-motivated nonminimal background cosmologies, the tightest 95% Confidential Level (CL) upper bound we obtain is 0.21 eV, both for P m nu and ma, from the combination of ACT, Planck and BAO measurements. Restricting the analyses to the standard ?CDM picture, we find P m nu < 0.16 eV and ma < 0.18 eV, both at 95% CL Interestingly, the best background cosmology is never found within the minimal ?CDM plus hot relics, regardless of the datasets exploited in the analyses. The combination of Planck with either BAO, SPT or ACT prefers a universe with a nonzero value of the running in the primordial power spectrum with strong evidence. Small-scale CMB probes, both alone and combined with BAO, either prefer, with substantial evidence, nonflat universes (as in the case of SPT) or a model with a time varying dark energy component (as in the case of ACT).
|
de Anda, F. J., Medina, O., Valle, J. W. F., & Vaquera-Araujo, C. A. (2023). Revamping Kaluza-Klein dark matter in an orbifold theory of flavor. Phys. Rev. D, 108(3), 035046–11pp.
Abstract: We suggest a common origin for dark matter, neutrino mass and family symmetry within the orbifold theory proposed in [Phys. Lett. B 801, 135195 (2020); Phys. Rev. D 101, 116012 (2020)]. Flavor physics is described by an A(4) family symmetry that results naturally from compactification. Weakly interacting massive particle dark matter emerges from the first Kaluza-Klein excitation of the same scalar that drives family symmetry breaking and neutrino masses through the inverse seesaw mechanism. In addition to the “golden” quark-lepton mass relation and predictions for 0 nu beta beta decay, the model provides a good global description of all flavor observables.
|