toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 1 Pages P01005 - 111pp  
  Keywords Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)  
  Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.  
  Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: Stefania.Bordoni@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000757487100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5131  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 055 - 31pp  
  Keywords Neutrino Detectors and Telescopes (experiments); Oscillation  
  Abstract This article presents the potential of a combined analysis of the JUNO and KM3NeT/ORCA experiments to determine the neutrino mass ordering. This combination is particularly interesting as it significantly boosts the potential of either detector, beyond simply adding their neutrino mass ordering sensitivities, by removing a degeneracy in the determination of Delta M-31(2) between the two experiments when assuming the wrong ordering. The study is based on the latest projected performances for JUNO, and on simulation tools using a full Monte Carlo approach to the KM3NeT/ORCA response with a careful assessment of its energy systematics. From this analysis, a 5 sigma determination of the neutrino mass ordering is expected after 6 years of joint data taking for any value of the oscillation parameters. This sensitivity would be achieved after only 2 years of joint data taking assuming the current global best-fit values for those parameters for normal ordering.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: nchau@apc.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000767221800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5181  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Operation and performance of the ATLAS semiconductor tracker in LHC Run 2 Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 1 Pages P01013 - 56pp  
  Keywords Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Radiation damage to detector materials (solid state); Solid state detectors  
  Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015-2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb(-1) to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. '  
  Address [Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000766149300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5174  
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K. url  doi
openurl 
  Title Impact of COHERENT measurements, cross section uncertainties and new interactions on the neutrino floor Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 055 - 26pp  
  Keywords dark matter detectors; dark matter experiments; neutrino properties; solar and atmospheric neutrinos  
  Abstract We reconsider the discovery limit of multi-ton direct detection dark matter experiments in the light of recent measurements of the coherent elastic neutrino-nucleus scattering process. Assuming the cross section to be a parameter entirely determined by data, rather than using its Standard Model prediction, we use the COHERENT CsI and LAr data sets to determine WIMP discovery limits. Being based on a data-driven approach, the results are thus free from theoretical assumptions and fall within the WIMP mass regions where XENONnT and DARWIN have best expected sensitivities. We further determine the impact of subleading nuclear form factor and weak mixing angle uncertainties effects on WIMP discovery limits. We point out that these effects, albeit small, should be taken into account. Moreover, to quantify the impact of new physics effects in the neutrino background, we revisit WIMP discovery limits assuming light vector and scalar mediators as well as neutrino magnetic moments/transitions. We stress that the presence of new interactions in the neutrino sector, in general, tend to worsen the WIMP discovery limit.  
  Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-5,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000751303400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5123  
Permanent link to this record
 

 
Author Renner, J. et al; Romo-Luque, C.; Carrion, J.V.; Diaz, J.; Martinez, A.; Querol, M.; Rodriguez-Ponce, J.; Teruel-Pardo, S. url  doi
openurl 
  Title Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 5 Pages P05044 - 17pp  
  Keywords Cryogenic detectors; Gamma camera; SPECT; PET PET; CT; coronary CT angiography (CTA); Liquid detectors  
  Abstract New detector approaches in Positron Emission Tomography imaging will play an important role in reducing costs, lowering administered radiation doses, and improving overall performance. PETALO employs liquid xenon as the active scintillating medium and UV-sensitive silicon photomultipliers for scintillation readout. The scintillation time in liquid xenon is fast enough to register time-of-flight information for each detected coincidence, and sufficient scintillation is produced with low enough fluctuations to obtain good energy resolution. The present simulation study examines a full-body-sized PETALO detector and evaluates its potential performance in PET image reconstruction.  
  Address [Romo-Luque, C.; Carrion, J. V.; Diaz, J.; Martinez, A.; Querol, M.; Rodriguez-Ponce, J.; Teruel-Pardo, S.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: paola.ferrario@dipc.org  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000811102400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5264  
Permanent link to this record
 

 
Author Hiti, B.; Cindro, V.; Gorisek, A.; Franks, M.; Marco-Hernandez, R.; Kramberger, G.; Mandic, I.; Mikuz, M.; Powell, S.; Steininger, H.; Vilella, E.; Zavrtanik, M.; Zhang, C. url  doi
openurl 
  Title Characterisation of analogue front end and time walk in CMOS active pixel sensor Type Journal Article
  Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 12 Pages P12020 - 12pp  
  Keywords Charge induction; Radiation-hard detectors; Solid state detectors  
  Abstract In this work we investigated a method to determine time walk in an active silicon pixel sensor prototype using Edge-TCT with infrared laser charge injection. Samples were investigated before and after neutron irradiation to 5 . 10(14) n(eq)/cm(2). Threshold, noise and calibration of the analogue front end were determined with external charge injection. A spatially sensitive measurement of collected charge and time walk was carried out with Edge-TCT, showing a uniform charge collection and output delay in pixel centre. On pixel edges charge sharing was observed due to finite beam width resulting in smaller signals and larger output delay. Time walk below 25 ns was observed for charge above 2000 e(-) at a threshold above the noise level. Time walk measurement with external charge injection yielded identical results.  
  Address [Hiti, B.; Cindro, V.; Gorisek, A.; Kramberger, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.] Jozef Stefan Inst, Jamova Cesta 39, Ljubljana, Slovenia, Email: bojan.hiti@ijs.si  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000758055400055 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5138  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Centrality determination in heavy-ion collisions with the LHCb detector Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 5 Pages P05009 - 31pp  
  Keywords Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors; Simulation methods and programs  
  Abstract The centrality of heavy-ion collisions is directly related to the created medium in these interactions. A procedure to determine the centrality of collisions with the LHCb detector is implemented for lead-lead collisions root s(NN) = 5 TeV and lead-neon fixed-target collisions at root s(NN) = 69 GeV. The energy deposits in the electromagnetic calorimeter are used to determine and define the centrality classes. The correspondence between the number of participants and the centrality for the lead-lead collisions is in good agreement with the correspondence found in other experiments, and the centrality measurements for the lead-neon collisions presented here are performed for the first time in fixed-target collisions at the LHC.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000832952600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5315  
Permanent link to this record
 

 
Author Briz, J.A.; Nerio, A.N.; Ballesteros, C.; Borge, M.J.G.; Martinez, P.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Maj, A.; Olko, P.; Parol, W.; Pedracka, A.; Sowicki, B.; Zieblinski, M.; Nacher, E. url  doi
openurl 
  Title Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators Type Journal Article
  Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 69 Issue 4 Pages 696-702  
  Keywords LaBr3; particle tracking; proton computed tomography (pCT); proton radiograph; proton therapy; scintillation detectors; silicon detectors  
  Abstract Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.  
  Address [Briz, J. A.; Nerio, A. N.; Ballesteros, C.; Borge, M. J. G.; Martinez, P.; Perea, A.; Tavora, V. G.; Tengblad, O.] Inst Estruct Mat CSIC, Madrid 28006, Spain, Email: jose.briz@csic.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000803113800017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5245  
Permanent link to this record
 

 
Author Diaz-Morcillo, A.; Barcelo, J.M.G.; Guerrero, A.J.L.; Navarro, P.; Gimeno, B.; Cuneáis, S.A.; Melcon, A.A.; Cogollos, C.; Calatroni, S.; Dobrich, B.; Gallego-Puyol, J.D.; Golm, J.; Irastorza, I.G.; Malbrunot, C.; Miralda-Escude, J.; Garay, C.P.; Redondo, J.; Wuensch, W. url  doi
openurl 
  Title Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal Universe  
  Volume 8 Issue 1 Pages 5 - 22pp  
  Keywords axions; dark matter detectors; haloscopes; resonant cavities  
  Abstract With the increasing interest in dark matter axion detection through haloscopes, in which different international groups are currently involved, the RADES group was established in 2016 with the goal of developing very sensitive detection systems to be operated in dipole magnets. This review deals with the work developed by this collaboration during its first five years: from the first designs-based on the multi-cavity concept, aiming to increase the haloscope volume, and thereby improve sensitivity-to their evolution, data acquisition design, and finally, the first experimental run. Moreover, the envisaged work within RADES for both dipole and solenoid magnets in the short and medium term is also presented.  
  Address [Diaz-Morcillo, Alejandro; Garcia Barcelo, Jose Maria; Lozano Guerrero, Antonio Jose; Navarro, Pablo; Alvarez Melcon, Alejandro] Univ Politecn Cartagena, Dept Informat & Commun Technol, Cartagena 30202, Spain, Email: alejandro.diaz@upct.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000746970600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5086  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Identification of charm jets at LHCb Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 2 Pages P02028 - 23pp  
  Keywords Analysis and statistical methods; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors  
  Abstract The identification of charm jets is achieved at LHCb for data collected in 2015-2018 using a method based on the properties of displaced vertices reconstructed and matched with jets. The performance of this method is determined using a dijet calibration dataset recorded by the LHCb detector and selected such that the jets are unbiased in quantities used in the tagging algorithm. The charm-tagging efficiency is reported as a function of the transverse momentum of the jet. The measured efficiencies are compared to those obtained from simulation and found to be in good agreement.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: dcraik@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000770368300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5177  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva