toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Chala, M.; Durieux, G.; Grojean, C.; de Lima, L.; Matsedonskyi, O. url  doi
openurl 
  Title Minimally extended SILH Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 088 - 32pp  
  Keywords Higgs Physics; Technicolor and Composite Models  
  Abstract Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory approach and develop a set of rules to estimate the size of the various operator coefficients, relating them to the parameters of the strong sector and its structural features. As a result, we obtain the patterns of new interactions affecting both the new singlet and the Higgs boson's physics. We identify the characteristics of the singlet field which cause its effects on Higgs physics to dominate over the ones inherited from the composite nature of the Higgs boson. Our effective field theory construction is supported by comparisons with explicit UV models.  
  Address [Chala, Mikael; Durieux, Gauthier; Grojean, Christophe; de Lima, Leonardo; Matsedonskyi, Oleksii] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: mikael.chala@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000403442600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3173  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Estrada Pastor, O.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Jet reconstruction and performance using particle flow with the ATLAS Detector Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 7 Pages 466 - 47pp  
  Keywords  
  Abstract This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb(-1) of ATLAS data from 8 TeV proton-proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.  
  Address [Jackson, P.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405437300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3219  
Permanent link to this record
 

 
Author Samart, D.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title Triangle mechanisms in the build up and decay of the N*(1875) Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 96 Issue 3 Pages 035202 - 14pp  
  Keywords  
  Abstract We studied the N*(1875)(3/ 2-) resonance with a multichannel unitary scheme, considering the Delta pi and Sigma * K, with their interaction extracted from chiral Lagrangians, and then added two more channels, the N*(1535) p and N sigma, which proceed via triangle diagrams involving the Sigma * K and Delta pi respectively in the intermediate states. The triangle diagram in the N*(1535) p case develops a singularity at the same energy as the resonance mass. We determined the couplings of the resonance to the different channels and the partial decay widths. We found a very large decay width to Sigma * K, and also observed that, due to interference with other terms, the N sigma channel has an important role in the pi pi mass distributions at low invariant masses, leading to an apparently large N sigma decay width. We discuss justifying the convenience of an experimental reanalysis of this resonance, in light of the findings of the paper, using multichannel unitary schemes.  
  Address [Samart, Daris] Rajamangala Univ Technol Isan, Fac Sci & Liberal arts, Dept Appl Phys, Nakhon Ratchasima 30000, Thailand, Email: daris.sa@rmuti.ac.th;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000409256500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3283  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Estrada Pastor, O.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at root s=13 TeV with the ATLAS detector Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 7 Pages 072002 - 36pp  
  Keywords  
  Abstract Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 3.2 fb(-1) collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-k(t) algorithm with radius parameter R = 0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20 < p(T) < 2000 GeV and pseudorapidities of vertical bar eta vertical bar < 4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region (vertical bar eta vertical bar < 1.2) for jets with 100 < p(T) < 500 GeV. An uncertainty of about 4.5% is found for low-p(T) jets with p(T) = 20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets (vertical bar eta vertical bar > 0.8) is derived from dijet p(T) balance measurements. For jets of p(T) = 80 GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range vertical bar eta vertical bar > 3.5 and in a narrow slice of 2.2 < vertical bar eta vertical bar < 2.4.  
  Address [Aaboud, M.; Jackson, P.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000412977500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3328  
Permanent link to this record
 

 
Author Hati, C.; Patra, S.; Reig, M.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Towards gauge coupling unification in left-right symmetric SU(3)(c) x SU(3)(L) x SU(3)(R) x U(1)(X) theories Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 1 Pages 015004 - 9pp  
  Keywords  
  Abstract We consider the possibility of gauge coupling unification within the simplest realizations of the SU(3)(c) x SU(3)(L) x SU(3)(R) xU(1)(X) gauge theory. We present a first exploration of the renormalization group equations governing the “bottom-up” evolution of the gauge couplings in a generic model with free normalization for the generators. Interestingly, we find that for a SU(3)(c) x SU(3)(L) x SU(3)(R) x U(1)(X) symmetry breaking scale M-X as low as a few TeV one can achieve unification in the presence of leptonic octets. We briefly comment on possible grand unified theory frameworks which can embed the SU(3)(c) x SU(3)(L) x SU(3)(R) xU(1)(X) model as well as possible implications, such as lepton flavor violating physics at the LHC.  
  Address [Hati, Chandan] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India, Email: chandan@prl.res.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405204700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3199  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva