toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Chen, H.X.; Oset, E. url  doi
openurl 
  Title pi pi interaction in the rho channel in finite volume Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 1 Pages 016014 - 15pp  
  Keywords  
  Abstract The aim of this paper is to investigate an efficient strategy that allows one to obtain pi pi phase shifts and rho meson properties from QCD lattice data with high precision. For this purpose we evaluate the levels of the pi pi system in the rho channel in finite volume using chiral unitary theory. We investigate the dependence on the pi mass and compare this with other approaches which use QCD lattice calculations and effective theories. We also illustrate the errors induced by using the conventional Luscher approach instead of a more accurate one that was recently developed that takes into account exactly the relativistic two-meson propagators. Finally, we make use of this latter approach to solve the inverse problem, getting pi pi phase shifts from “synthetic” lattice data, providing an optimal strategy and showing which accuracy is needed in these data to obtain the rho properties with a desired accuracy.  
  Address [Chen, Hua-Xing; Oset, E.] Univ Valencia, CSIC, Ctr Mixto, Inst Invest Paterna,Dept Fis Teor, Valencia 46071, Spain, Email: hxchen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000313945700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1309  
Permanent link to this record
 

 
Author Bazzocchi, F.; Morisi, S.; Peinado, E.; Valle, J.W.F.; Vicente, A. url  doi
openurl 
  Title Bilinear R-parity violation with flavor symmetry Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 033 - 16pp  
  Keywords Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model; Discrete and Finite Symmetries  
  Abstract Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry Lambda(4) with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles theta(13) and theta(23) in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.  
  Address [Bazzocchi, F.] Int Sch Adv Studies SISSA, Trieste, Italy, Email: fbazzo@sissa.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315583200033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1367  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A. url  doi
openurl 
  Title Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV Type Journal Article
  Year 2013 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 73 Issue 3 Pages 2304 - 118pp  
  Keywords  
  Abstract The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of root s = 7 TeV corresponding to an integrated luminosity of 38 pb(-1). Jets are reconstructed with the anti-k(t) algorithm with distance parameters R = 0.4 or R = 0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT >= 20 GeV and pseudorapidities vertical bar eta vertical bar < 4.5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2.5 % in the central calorimeter region (vertical bar eta vertical bar < 0.8) for jets with 60 <= p(T) < 800 GeV, and is maximally 14 % for p(T) < 30 GeV in the most forward region 3.2 <= vertical bar eta vertical bar < 4.5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon p(T), the sum of the transverse momenta of tracks associated to the jet, or a system of low-p(T) jets recoiling against a high-p(T) jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-p(T) jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined.  
  Address SUNY Albany, Albany, NY 12222 USA  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000318290600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1429  
Permanent link to this record
 

 
Author MiniBooNE Collaboration (Aguilar-Arevalo, A.A. et al); Sorel, M. url  doi
openurl 
  Title Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 718 Issue 4-5 Pages 1303-1308  
  Keywords MiniBooNE; Neutrino oscillation; Lorentz violation  
  Abstract The sidereal time dependence of MiniBooNE nu(e) and (nu) over bar (e) appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov (K-S) test shows both the nu(e) and (nu) over bar (e) appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the nu(e) appearance data prefer a sidereal time-independent solution, and the (nu) over bar (e) appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10(-20) GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for nu(mu) -> nu(e) and (nu) over bar (mu) -> (nu) over bar (e) oscillations. The fit values and limits of combinations of SME coefficients are provided.  
  Address [Dharmapalan, R.; Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA, Email: katori@fnal.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314554300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1390  
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Vogelsberger, M.; Viel, M.; Loeb, A. url  doi
openurl 
  Title Neutrino signatures on the high-transmission regions of the Lyman alpha forest Type Journal Article
  Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 431 Issue 4 Pages 3670-3677  
  Keywords neutrinos; intergalactic medium; quasars: absorption lines; cosmology: theory; large-scale structure of Universe  
  Abstract We quantify the impact of massive neutrinos on the statistics of low-density regions in the intergalactic medium as probed by the Lyman alpha forest at redshifts z = 2.2-4. Based on mock but realistic quasar (QSO) spectra extracted from hydrodynamic simulations with cold dark matter, baryons and neutrinos, we find that the probability distribution of weak Lyman alpha absorption features, as sampled by Lyman alpha flux regions at high transmissivity, is strongly affected by the presence of massive neutrinos. We show that systematic errors affecting the Lyman alpha forest reduce but do not erase the neutrino signal. Using the Fisher matrix formalism, we conclude that the sum of the neutrino masses can be measured, using the method proposed in this paper, with a precision smaller than 0.4 eV using a catalogue of 200 high-resolution (signal-to-noise ratio similar to 100) QSO spectra. This number reduces to 0.27 eV by making use of reasonable priors in the other parameters that also affect the statistics of the high-transitivity regions of the Lyman alpha forest. The constraints obtained with this method can be combined with independent bounds from the cosmic microwave background, large-scale structures and measurements of the matter power spectrum from the Lyman alpha forest to produce tighter upper limits on the sum of the masses of the neutrinos.  
  Address Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: viel@oats.inaf.it  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000319479000057 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1458  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva