toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 7 Pages 618 - 29pp  
  Keywords  
  Abstract DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: clara.cuesta@ciemat.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000826161300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5293  
Permanent link to this record
 

 
Author Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J. url  doi
openurl 
  Title Toward deconstructing the simplest seesaw mechanism Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 9 Pages 095020 - 32pp  
  Keywords  
  Abstract The triplet or type-II seesaw mechanism is the simplest way to endow neutrinos with mass in the Standard Model (SM). Here we review its associated theory and phenomenology, including restrictions from S, T, U parameters, neutrino experiments, charged lepton flavor violation as well as collider searches. We also examine restrictions coming from requiring consistency of electroweak symmetry breaking, i.e., perturbative unitarity and stability of the vacuum. Finally, we discuss novel effects associated to the scalar mediator of neutrino mass generation namely, (i) rare processes, e.g., l(alpha)-> l(beta)gamma decays, at the intensity frontier, and also (ii) four-lepton signatures in colliders at the high-energy frontier. These can be used to probe neutrino properties in an important way, providing a test of the absolute neutrino mass and mass ordering, as well as of the atmospheric octant. They may also provide the first evidence for charged lepton flavor violation in nature. In contrast, neutrino nonstandard interaction strengths are found to lie below current detectability.  
  Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807778600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5249  
Permanent link to this record
 

 
Author Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J. url  doi
openurl 
  Title High-energy colliders as a probe of neutrino properties Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 829 Issue Pages 137110 - 5pp  
  Keywords  
  Abstract The mediators of neutrino mass generation can provide a probe of neutrino properties at the next round of high-energy hadron (FCC-hh) and lepton colliders (FCC-ee/ILC/CEPC/CLIC). We show how the decays of the Higgs triplet scalars mediating the simplest seesaw mechanism can shed light on the neutrino mass scale and mass-ordering, as well as the atmospheric octant. Four-lepton signatures at the high-energy frontier may provide the discovery-site for charged lepton flavor non-conservation in nature, rather than low-energy intensity frontier experiments.  
  Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000831681800020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5301  
Permanent link to this record
 

 
Author Addazi, A.; Ricciardi, G.; Scarlatella, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Interpreting B anomalies within an extended 331 gauge theory Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 3 Pages 035030 - 14pp  
  Keywords  
  Abstract In light of the recent R-K(*) data on neutral current flavor anomalies in B -> K-(*())l(+)l(-) decays, we reexamine their quantitative interpretation in terms of an extended 331 gauge theory framework. We achieve this by adding two extra lepton species with novel 331 charges, while ensuring that the model remains anomaly-free. In contrast to the canonical 331 models, the gauge charges of the first and second lepton families differ from each other, allowing lepton-flavor universality violation. We further expand the model by adding the neutral fermions required to provide an adequate description for small neutrino masses.  
  Address [Addazi, Andrea] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: Addazi@scu.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000872136400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5393  
Permanent link to this record
 

 
Author Chatterjee, S.S.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Nonunitarity of the lepton mixing matrix at the European Spallation Source Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 7 Pages 075016 - 16pp  
  Keywords  
  Abstract If neutrinos get mass through the exchange of lepton mediators, as in seesaw schemes, the neutrino appearance probabilities in oscillation experiments are modified due to effective nonunitarity of the lepton mixing matrix. This also leads to new CP phases and an ambiguity in underpinning the “conventional” phase of the three-neutrino paradigm. We study the CP sensitivities of various setups based at the European Spallation Source neutrino super-beam (ESSnuSB) experiment in the presence of nonunitarity. We also examine its potential in constraining the associated new physics parameters. Moreover, we show how the combination of DUNE and ESSnuSB can help further improve the sensitivities on the nonunitarity parameters.  
  Address [Chatterjee, Sabya Sachi] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France, Email: sabya-sachi.chatterjee@ipht.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898616000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5440  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva