toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Sobczyk, J.E.; Hernandez, E.; Nakamura, S.X.; Nieves, J.; Sato, T. url  doi
openurl 
  Title Angular distributions in electroweak pion production off nucleons: Odd parity hadron terms, strong relative phases, and model dependence Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 7 Pages 073001 - 39pp  
  Keywords  
  Abstract The study of pion production in nuclei is important for signal and background determinations in current and future neutrino oscillation experiments. The first step, however, is to understand the pion production reactions at the free nucleon level. We present an exhaustive study of the charged-current and neutral-current neutrino and antineutrino pion production off nucleons, paying special attention to the angular distributions of the outgoing pion. We show, using general arguments, that parity violation and time-reversal odd correlations in the weak differential cross sections are generated from the interference between different contributions to the hadronic current that are not relatively real. Next, we present a detailed comparison of three state-of-the-art, microscopic models for electroweak pion production off nucleons, and we also confront their predictions with polarized electron data, as a test of the vector content of these models. We also illustrate the importance of carrying out a comprehensive test at the level of outgoing pion angular distributions, going beyond comparisons done for partially integrated cross sections, where model differences cancel to a certain extent. Finally, we observe that all charged and neutral current distributions show sizable anisotropies, and identify channels for which parity-violating effects are clearly visible. Based on the above results, we conclude that the use of isotropic distributions for the pions in the center of mass of the final pion-nucleon system, as assumed by some of the Monte Carlo event generators, needs to be improved by incorporating the findings of microscopic calculations.  
  Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Apartado 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446557200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3751  
Permanent link to this record
 

 
Author Hernandez, E.; Nieves, J. url  doi
openurl 
  Title Neutrino-induced one-pion production revisited: The nu(mu)n -> mu(-)n pi(+) channel Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 5 Pages 053007 - 18pp  
  Keywords  
  Abstract Understanding single pion production reactions on free nucleons is the first step towards a correct description of these processes in nuclei, which are important for signal and background contributions in current and near future accelerator neutrino oscillation experiments. In this work, we reanalyze our previous studies of neutrino-induced one-pion production on nucleons for outgoing pi N invariant masses below 1.4 GeV. Our motivation is to get a better description of the nu(mu)n -> mu(-)n pi(+) cross section, for which current theoretical models give values significantly below data. This channel is very sensitive to the crossed Delta(1232) contribution and thus, to spin 1/2 components in the Rarita-Schwinger Delta propagator. We show how these spin 1/2 components are nonpropagating and give rise to contact interactions. In this context, we point out that the discrepancy with experiment might be corrected by the addition of appropriate extra contact terms and argue that this procedure will provide a natural solution to the nu(mu)n -> mu(-)n pi(+) puzzle. To keep our model simple, in this work, we propose to change the strength of the spin 1/2 components in the. propagator and use the nu(mu)n -> mu(-)n pi(+) data to constraint its value. With this modification, we now find a good reproduction of the nu(mu)n -> mu(-)n pi(+) cross section without affecting the good results previously obtained for the other channels. We also explore how this change in the. propagator affects our predictions for pion photoproduction and find also a better agreement with experiment than with the previous model.  
  Address [Hernandez, E.] Univ Salamanca, Dept Fis, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399255000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3055  
Permanent link to this record
 

 
Author Alvarez-Ruso, L.; Hernandez, E.; Nieves, J.; Vicente Vacas, M.J. url  doi
openurl 
  Title Watson's theorem and the N Delta(1232) axial transition Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 014016 - 16pp  
  Keywords  
  Abstract We present a new determination of the N Delta axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al. [Phys. Rev. D 76, 033005 (2007)] is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger C-5(A) (0), in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.  
  Address [Alvarez-Ruso, L.; Nieves, J.] Ctr Mixto CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368324700003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2521  
Permanent link to this record
 

 
Author Albertus, C.; Hernandez, E.; Hidalgo-Duque, C.; Nieves, J. url  doi
openurl 
  Title (B)over-bar(s) -> K semileptonic decay from an Omnes improved constituent quark model Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 738 Issue Pages 144-149  
  Keywords  
  Abstract We study the f(+) form factor for the semileptonic (B) over bar (s) -> K+ l(-) (V) over bar (l) decay in a constituent quark model. The valence quark estimate is supplemented with the contribution from the (B) over bar* pole that dominates the high q(2) region. We use a multiply-subtracted Omnes dispersion relation to extend the quark model predictions from its region of applicability near q(max)(2) = (M-Bs – M-K)(2) similar to 23.75 GeV2 to all q(2) values accessible in the physical decay. To better constrain the dependence of f(+) on q(2), we fit the subtraction constants to a combined input from previous light cone sum rule by Duplancic and Melic (2008) [11] and the present quark model results. From this analysis, we obtain Gamma ( (B) over bar (s) -> K+ l(-) (V) over bar (l)) = (5.47(-0.46)(+0.54)) vertical bar Vub vertical bar(2) x 10(-9) MeV, which is about 10% and 20% higher than the predictions based on Lattice QCD and QCD light cone sum rules respectively. The former predictions, for both the form factor f(+) (q(2)) and the differential decay width, lie within the 1 sigma band of our estimated uncertainties for all q(2) values accessible in the physical decay, except for a quite small region very close to q(max)(2). Differences with the light cone sum results for the form factor f(+) are larger than 20% in the region above q(2) = 15 GeV2.  
  Address [Albertus, C.] Univ Granada, Dept Fis Atom Nucl & Mol, E-18071 Granada, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344624900022 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2020  
Permanent link to this record
 

 
Author Hernandez, E.; Nieves, J.; Vicente Vacas, M.J. url  doi
openurl 
  Title Single pion production in neutrino-nucleus scattering Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 11 Pages 113009 - 11pp  
  Keywords  
  Abstract We study 1 pi production in both charged and neutral current neutrino-nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results are incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pi production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of the data, better for neutral-current than for charged-current channels, although the theory is systematically below the data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie in the forward direction and at high energies.  
  Address [Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320769600004 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1485  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva