toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Yokoyama, R. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tolosa-Delgado, A. doi  openurl
  Title Strong one-neutron emission from two-neutron unbound states in beta decays of the r-process nuclei Ga-86,Ga-87 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 3 Pages 031302 - 6pp  
  Keywords  
  Abstract beta-delayed one-neutron and two-neutron branching ratios (P-1n and P-2n) have been measured in the decay of A = 84 to 87 Ga isotopes at the Radioactive-Isotope Beam Factory (RIBF) at the RIKEN Nishina Center using a high-efficiency array of He-3 neutron counters (BRIKEN). Two-neutron emission was observed in the decay of Ga-84,Ga-85,Ga-87 for the first time and the branching ratios were measured to be P-2n = 1.6(2)%, 1.3(2)%, and 10.2(28)(stat)(5)(sys)%, respectively. One-neutron branching ratio of Ga-87 (P-1n = 81(9)(stat)(8)(sys)%) and half-life of 29(4) ms were measured for the first time. The branching ratios of Ga-86 were also measured to be P-1n = 74(2)(stat)(8)(sys)% and 16.2(9)(stat)(6)(sys)% with better precision than a previous study. The observation that P-1n > P-2n for both Ga-86,Ga-87 was unexpected and is interpreted as a signature of dominating one-neutron emission from the two-neutron unbound excited states in Ge-86,Ge-87. In order to interpret the experimental results, shell-model and Hauser-Feshbach statistical model calculations of delayed particle and gamma-ray emission probabilities were performed. This model framework reproduces the experimental results. The shell model alone predicts P-2n significantly larger than P-1n for the Ga-87 decay, and it is necessary to invoke a statistical description to successfully explain the observation that P-1n > P-2n. Our new results demonstrate the relevance and importance of a statistical description of neutron emission for the prediction of the decay properties of multineutron emitters and that it must be included in the r-process modeling.  
  Address [Yokoyama, R.; Grzywacz, R.; Rasco, B. C.; Brewer, N.; Heideman, J.; King, T. T.; Madurga, M.; Singh, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: ryokoyam@utk.edu  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486641000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4145  
Permanent link to this record
 

 
Author AGATA Collaboration (Kaya, L. et al); Gadea, A. doi  openurl
  Title Isomer spectroscopy in Ba-133 and high-spin structure of Ba-134 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 2 Pages 024323 - 18pp  
  Keywords  
  Abstract The transitional nuclei Ba-134 and Ba-133 are investigated after multinucleon transfer employing the high-resolution Advanced GAmma Tracking Array coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and after fusion-evaporation reaction at the FN tandem accelerator of the University of Cologne, Germany. The J(pi) = 19/2(+) state at 1942 keV in Ba-133 is identified as an isomer with a half-life of 66.6(20) ns corresponding to a B(E1) value of 7.7(4) x 10(-6) e(2) fm(2) for the J(pi) = 19/2(+) to J(pi) = 19/2(-) transition. The level scheme of Ba-134 above the J(pi) = 10(+) isomer is extended to approximately 6 MeV. A pronounced backbending is observed at h omega = 0.38 MeV along the positive-parity yrast band. The results are compared to the high-spin systematics of the Z = 56 isotopes. Large-scale shell-model calculations employing the GCN50:82, SN100PN, SNV, PQM130, Realistic SM, and EPQQM interactions reproduce the experimental findings and elucidate the structure of the high-spin states. The shell-model calculations employing the GCN50:82 and PQM130 interactions reproduce alignment properties and provide detailed insight into the microscopic origin of this phenomenon in transitional Ba-134.  
  Address [Kaya, L.; Vogt, A.; Reiter, P.; Arnswald, K.; Birkenbach, B.; Blazhev, A.; Droste, M.; Eberth, J.; Esmaylzadeh, A.; Fransen, C.; Hess, H.; Hirsch, R.; Jolie, J.; Karayonchev, V; Kornwebel, L.; Lewandowski, L.; Mueller-Gatermann, C.; Regis, J-M; Saed-Samii, N.; Schomacker, K.; Seidlitz, M.; Siebeck, B.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000480688200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4106  
Permanent link to this record
 

 
Author Phong, V.H. et al; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Tain, J.L.; Tarifeño-Saldivia, A.; Tolosa-Delgado, A. doi  openurl
  Title Observation of a μs isomer in In-134(49)85: Proton-neutron coupling “southeast” of Sn-132(50)82 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 1 Pages 011302 - 6pp  
  Keywords  
  Abstract We report on the observation of a microsecond isomeric state in the single-proton-hole, three-neutron-particle nucleus In-134. The nuclei of interest were produced by in-flight fission of a U-238 beam at the Radioactive Isotope Beam Factory at RIKEN. The isomer depopulates through a gamma ray of energy 56.7(1) keV and with a half-life of T-1/2 = 3.5(4) μs. Based on the comparison with shell-model calculations, we interpret the isomer as the I-pi = 5(-) member of the pi 0g(9/2)(-1) circle times nu 1f(7/2)(3) multiplet, decaying to the I-pi = 7(-) ground state with a reduced-transition probability of B(E2; 5(-) -> 7(-)) = 0.53(6) W.u. Observation of this isomer, and lack of evidence in the current work for a I-pi = 5(-) isomer decay in In-132, provides a benchmark of the proton-neutron interaction in the region of the nuclear chart “southeast” of Sn-132, where experimental information on excited states is sparse.  
  Address [Phong, V. H.; Lorusso, G.; Liu, J.; Matsui, K.; Nishimura, S.; Ahn, D. S.; Baba, H.; Go, S.; Isobe, T.; Kiss, G.; Kubono, S.; Sakurai, H.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.] RIKEN, RIKEN Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan, Email: giuseppe.lorusso@npl.co.uk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000477895400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4080  
Permanent link to this record
 

 
Author Dudouet, J. et al; Gadea, A.; Perez-Vidal, R.M. doi  openurl
  Title Excitations of the magic N=50 neutron-core revealed in Ga-81 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 1 Pages 011301 - 6pp  
  Keywords  
  Abstract The high-spin states of the neutron-rich Ga-81, with three valence protons outside a Ni-78 core, were measured. The measurement involved prompt gamma-ray spectroscopy of fission fragments isotopically identified using the combination of the variable mode spectrometer (VAMOS++) and the advanced gamma tracking array (AGATA). The new gamma-ray transitions, observed in coincidence with Ga-81 ions, and the corresponding level scheme do not confirm the high-spin levels reported earlier. The newly observed high-spin states in Ga-81 are interpreted using the results of state-of-the-art large-scale shell model (LSSM) calculations. The lower excitation energy levels are understood as resulting from the recoupling of three valence protons to the closed doubly magic core, while the highest excitation energy levels correspond to excitations of the magic N = 50 neutron core. These results support the doubly magic character of Ni-78 and the persistence of the N = 50 shell closure but also highlight the presence of strong proton-neutron correlations associated with the promotion of neutrons across the magic N = 50 shell gap, only few nucleons away from Ni-78.  
  Address [Dudouet, J.; Maquart, G.; Stezowski, O.; Ducoin, C.; Guinet, D.; Redon, N.] Univ Lyon 1, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France, Email: jeremie.dudouet@csnsm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000475500200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4095  
Permanent link to this record
 

 
Author Fuster-Martinez, N.; Bruce, R.; Hofer, M.; Persson, T.; Redaelli, S.; Tomas, R. doi  openurl
  Title Aperture measurements with ac dipoles and movable collimators in the Large Hadron Collider Type Journal Article
  Year 2022 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 25 Issue 10 Pages 101002 - 13pp  
  Keywords  
  Abstract This paper presents a first experimental demonstration of a new nondestructive method for aperture measurements based on ac dipoles. In high intensity particle colliders, such as the CERN Large Hadron Collider (LHC), aperture measurements are crucial for a safe operation while optimizing the optics in order to reduce the size of the colliding beams and hence increase the luminosity. In the LHC, this type of measurements became mandatory during beam commissioning and the current method used is based on the destructive blowup of bunches using a transverse damper. The new method presented in this paper uses the ac-dipole excitation to generate adiabatic forced oscillations of the beam in order to create losses to identify the smallest aperture in the machine without blowing up the beam emittance. A precise and tuneable control of the oscillation amplitude enables the beams to be reused for several aperture measurements, as well as for other subsequent commissioning activities. Measurements performed with the new method are presented and compared with the current LHC transverse damper method for two different beam energies and two different operational optics.  
  Address [Fuster-Martinez, N.] CSIC UV, Inst Fis Corpuscular, Valencia 46908, Spain, Email: nuria.fuster@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000875736400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5397  
Permanent link to this record
 

 
Author Woolley, B.; Burt, G.; Dexter, A.C.; Peacock, R.; Millar, W.L.; Catalan Lasheras, N.; Degiovanni, A.; Grudiev, A.; Mcmonagle, G.; Syratchev, I.; Wuensch, W.; Rodriguez Castro, E.; Giner Navarro, J. doi  openurl
  Title High-gradient behavior of a dipole-mode rf structure Type Journal Article
  Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 23 Issue 12 Pages 122002 - 11pp  
  Keywords  
  Abstract A normal-conducting, X-band traveling wave structure operating in the dipole mode has been systematically high-gradient tested to gain insight into the maximum possible gradients in these types of structure. Measured structure conditioning, breakdown behavior, and achieved surface fields are reported as well as a postmortem analysis of the breakdown position and a scanning electron microscope analysis of the high-field surfaces. The results of these measurements are then compared to high-gradient results from monopole-mode cavities. Scaled to a breakdown rate of 10(-6), the cavities were found to operate at a peak electric field of 154 MV/m and a peak modified Poynting vector S-c of 5.48 MW/mm(2). The study provides important input for the further development of dipole-mode cavities for use in the Compact Linear Collider as a crab cavity and dipole-mode cavities for use in x-ray free-electron lasers as well as for studies of the fundamental processes in vacuum arcs. Of particular relevance are the unique field patterns in dipole cavities compared to monopole cavities, where the electric and magnetic fields peak in orthogonal planes, which allow the separation of the role of electric and magnetic fields in breakdown via postmortem damage observation. The azimuthal variation of breakdown crater density is measured and is fitted to sinusoidal functions. The best fit is a power law fit of exponent 6. This is significant, as it shows how breakdown probability varies over a surface area with a varying electric field after conditioning to a given peak field.  
  Address [Woolley, B.; Burt, G.; Dexter, A. C.; Peacock, R.; Millar, W. L.] Univ Lancaster, Lancaster LA1 4YW, England  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000614886300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4696  
Permanent link to this record
 

 
Author Vnuchenko, A.; Esperante Pereira, D.; Gimeno, B.; Benedetti, S.; Catalan Lasheras, N.; Garlasch, M.; Grudiev, A.; McMonagle, G.; Pitman, S.; Syratchev, I.; Timmins, M.; Wegner, R.; Woolley, B.; Wuensch, W.; Faus-Golfe, A. doi  openurl
  Title High-gradient testing of an S-band, normal-conducting low phase velocity accelerating structure Type Journal Article
  Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 23 Issue 8 Pages 084801 - 13pp  
  Keywords  
  Abstract A novel high-gradient accelerating structure with low phase velocity, v/c = 0.38, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC 100 MV/m high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward traveling wave (BTW) with a phase advance of 150 degrees and has an active length of 19 cm. The main objective for designing and testing this structure was to demonstrate that low velocity particles, in particular protons, can be accelerated with high gradients. In addition, the performance of this structure compared to other type of structures provides insights into the factors that limit high gradient operation. The structure was conditioned successfully to high gradient using the same protocol as for CLIC X-band structures. However, after the high power test, data analysis realized that the structure had been installed backwards, that is, the input power had been fed into what is nominally the output end of the structure. This resulted in higher peak fields at the power feed end and a steeply decreasing field profile along the structure, rather than the intended near constant field and gradient profile. A local accelerating gradient of 81 MV/m near the input end was achieved at a pulse length of 1.2 μs and with a breakdown rate (BDR) of 7.2 x 10(-7) 1 /pulse/m. The reverse configuration was accidental but the operating with this field condition gave very important insights into high-gradient behaviour and a comprehensive analysis has been carried out. A particular attention was paid to the characterization of the distribution of BD positions along the structure and within a cell.  
  Address [Vnuchenko, A.; Esperante Pereira, D.; Gimeno Martinez, B.] Inst Fsica Corpuscular IFIC, Valencia 46980, Spain, Email: anna.vnuchenko@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000582958800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4584  
Permanent link to this record
 

 
Author Andreotti, M. et al; Cervera-Villanueva, A.; Garcia-Peris, M. a.; Martin-Albo, J.; Querol, M.; Rocabado, J.; Saadana, A. doi  openurl
  Title Cryogenic characterization of Hamamatsu HWB MPPCs for the DUNE photon detection system Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 1 Pages T01007 - 27pp  
  Keywords Cryogenic detectors; Photon detectors for UV, visible and IR photons (solid-state); Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc)  
  Abstract The Deep Underground Neutrino Experiment (DUNE) is a next generation experiment aimed to study neutrino oscillation. Its long-baseline configuration will exploit a Near Detector (ND) and a Far Detector (FD) located at a distance of similar to 1300 km. The FD will consist of four Liquid Argon Time Projection Chamber (LAr TPC) modules. A Photon Detection System (PDS) will be used to detect the scintillation light produced inside the detector after neutrino interactions. The PDS will be based on light collectors coupled to Silicon Photomultipliers (SiPMs). Different photosensor technologies have been proposed and produced in order to identify the best samples to fullfill the experiment requirements. In this paper, we present the procedure and results of a validation campaign for the Hole Wire Bonding (HWB) MPPCs samples produced by Hamamatsu Photonics K.K. (HPK) for the DUNE experiment, referring to them as 'SiPMs'. The protocol for a characterization at cryogenic temperature (77 K) is reported. We present the down-selection criteria and the results obtained during the selection campaign undertaken, along with a study of the main sources of noise of the SiPMs including the investigation of a newly observed phenomenon in this field.  
  Address [de Souza, H. Vieira] Univ Paris Cite, Lab Astroparticule & Cosmol, APC, Paris, France, Email: elisabetta.montagna@bo.infn.it  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001178134800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6072  
Permanent link to this record
 

 
Author Unno, Y. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U. doi  openurl
  Title Specifications and pre-production of n plus -in-p large-format strip sensors fabricated in 6-inch silicon wafers, ATLAS18, for the Inner Tracker of the ATLAS Detector for High-Luminosity Large Hadron Collider Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 3 Pages T03008 - 29pp  
  Keywords Particle tracking detectors (Solid-state detectors); Radiation-hard detectors; Si microstrip and pad detectors  
  Abstract The ATLAS experiment is constructing new all-silicon inner tracking system for HL-LHC. The strip detectors cover the radial extent of 40 to 100 cm. A new approach is adopted to use p-type silicon material, making the readout in n+-strips, so-called n+-in-p sensors. This allows for enhanced radiation tolerance against an order of magnitude higher particle fluence compared to the LHC. To cope with varying hit rates and occupancies as a function of radial distance, there are two barrel sensor types, the short strips (SS) for the inner 2 and the long strips (LS) for the outer 2 barrel cylinders, respectively. The barrel sensors exhibit a square, 9.8 x 9.8 cm2, geometry, the largest possible sensor area from a 6-inch wafer. The strips are laid out in parallel with a strip pitch of 75.5 μm and 4 or 2 rows of strip segments. The strips are AC-coupled and biased via polysilicon resistors. The endcap sensors employ a “stereo-annulus” geometry exhibiting a skewed-trapezoid shapes with circular edges. They are designed in 6 unique shapes, R0 to R5, corresponding to progressively increasing radial extents and which allows them to fit within the petal geometry and the 6-inch wafer maximally. The strips are in fan-out geometry with an in-built rotation angle, with a mean pitch of approximately 75 μm and 4 or 2 rows of strip segments. The eight sensor types are labeled as ATLAS18xx where xx stands for SS, LS, and R0 to R5. According to the mechanical and electrical specifications, CAD files for wafer processing were laid out, following the successful designs of prototype barrel and endcap sensors, together with a number of optimizations. A pre-production was carried out prior to the full production of the wafers. The quality of the sensors is reviewed and judged excellent through the test results carried out by vendor. These sensors are used for establishing acceptance procedures and to evaluate their performance in the ATLAS collaboration, and subsequently for pre-production of strip modules and stave and petal structures.  
  Address [Allport, P. P.; Chisholm, A.; George, W.; Gonella, L.; Kopsalis, I.; Lomas, J.] Univ Birmingham, Sch Phys & Astron, Birmingham B152TT, England, Email: yoshinobu.unno@kek.jp  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000974242700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5522  
Permanent link to this record
 

 
Author Poley, L.; Stolzenberg, U.; Schwenker, B.; Frey, A.; Gottlicher, P.; Marinas, C.; Stanitzki, M.; Stelzer, B. doi  openurl
  Title Mapping the material distribution of a complex structure in an electron beam Type Journal Article
  Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 1 Pages P01010 - 33pp  
  Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors; Detector design and construction technologies and materials  
  Abstract The simulation and analysis of High Energy Physics experiments require a realistic simulation of the detector material and its distribution. The challenge is to describe all active and passive parts of large scale detectors like ATLAS in terms of their size, position and material composition. The common method for estimating the radiation length by weighing individual components, adding up their contributions and averaging the resulting material distribution over extended structures provides a good general estimate, but can deviate significantly from the material actually present. A method has been developed to assess its material distribution with high spatial resolution using the reconstructed scattering angles and hit positions of high energy electron tracks traversing an object under investigation. The study presented here shows measurements for an extended structure with a highly inhomogeneous material distribution. The structure under investigation is an End-of-Substructure-card prototype designed for the ATLAS Inner Tracker strip tracker – a PCB populated with components of a large range of material budgets and sizes. The measurements presented here summarise requirements for data samples and reconstructed electron tracks for reliable image reconstruction of large scale, inhomogeneous samples, choices of pixel sizes compared to the size of features under investigation as well as a bremsstrahlung correction for high material densities and thicknesses.  
  Address [Poley, L.; Stelzer, B.] Simon Fraser Univ, Dept Phys, Univ Dr, Burnaby, BC, Canada, Email: APoley@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000608273000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4687  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva