toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity Type Journal Article
  Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 34 Issue 4 Pages 045006 - 21pp  
  Keywords Born-Infeld gravity; BTZ; wormholes; nonsingular solutions; geodesic completeness  
  Abstract We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.  
  Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000395398800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3013  
Permanent link to this record
 

 
Author Guendelman, E.I.; Olmo, G.J.; Rubiera-Garcia, D.; Vasihoun, M. url  doi
openurl 
  Title Nonsingular electrovacuum solutions with dynamically generated cosmological constant Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 726 Issue 4-5 Pages 870-875  
  Keywords Modified gravity; Palatini formalism; Nonlinear electrodynamics; Dynamical cosmological constant; Nonsingular solutions; Wormholes  
  Abstract We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.  
  Address [Guendelman, E. I.; Vasihoun, M.] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel, Email: guendel@bgumail.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327907000045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1680  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Semiclassical geons as solitonic black hole remnants Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 011 - 10pp  
  Keywords modified gravity; primordial black holes; Wormholes; quantum field theory on curved space  
  Abstract We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1532  
Permanent link to this record
 

 
Author Sepehri, A.; Pincak, R.; Olmo, G.J. doi  openurl
  Title M-theory, graphene-branes and superconducting wormholes Type Journal Article
  Year 2017 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 14 Issue 11 Pages 1750167 - 32pp  
  Keywords M-theory; wormholes; graphene; superconductors  
  Abstract Exploiting an M-brane system whose structure and symmetries are inspired by those of graphene (what we call a graphene-brane), we propose here a similitude between two layers of graphene joined by a nanotube and wormholes scenarios in the brane world. By using the symmetries and mathematical properties of the M-brane system, we show here how to possibly increase its conductivity, to the point of making it as a superconductor. The questions of whether and under which condition this might point to the corresponding real graphene structures becoming superconducting are briefly outlined.  
  Address [Sepehri, Alireza] Shahid Bahonar Univ, Fac Phys, POB 76175, Kerman, Iran, Email: alireza.sepehri@uk.ac.ir;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413442500018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3334  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva