toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author de Salas, P.F.; Gariazzo, S.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects Type Journal Article
  Year 2018 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 5 Issue Pages 36 - 50pp  
  Keywords neutrino mass ordering; neutrino oscillations; neutrinoless double beta (0v beta beta) decay; large scale structure formation; cosmic microwave Background (CMB); neutrino masses and flavor mixing  
  Abstract The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.  
  Address [de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446788500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3755  
Permanent link to this record
 

 
Author Abgrall, N. et al; Cervera-Villanueva, A.; Escudero, L.; Monfregola, L.; Stamoulis, P. url  doi
openurl 
  Title Time projection chambers for the T2K near detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 637 Issue 1 Pages 25-46  
  Keywords Time projection chamber; Drift chamber; Gas system; Micromegas; Neutrino oscillation  
  Abstract The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker are used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/NOMAD dipole magnet and the TPCs measure the charges, momenta, and particle types of charged particles passing through them. Novel features of the TPC design include its rectangular box layout constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the micromegas modules, the readout electronics, the gas handling system, and shows the performance of the TPCs as deduced from measurements with particle beams, cosmic rays, and the calibration system.  
  Address [Birney, P.; Bojechko, C.; Fransham, K.; Gaudin, A.; Karlen, D.; Langstaff, R.; Lenckowski, M.; Myslik, J.; Poffenberger, P.; Roney, M.; Tvaskis, V.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada, Email: karlen@uvic.ca  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289608000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 607  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P. url  doi
openurl 
  Title The T2K experiment Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 659 Issue 1 Pages 106-135  
  Keywords Neutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-Kamiokande  
  Abstract The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle theta(13) by observing nu(e) appearance in a nu(mu) beam. It also aims to make a precision measurement of the known oscillation parameters, Delta m(23)(2) and sin(2)2 theta(23), via nu(mu) disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.  
  Address [Beznosko, D.; Gilje, K.; Hignight, J.; Imber, J.; Jung, C. K.; Le, P. T.; Lopez, G. D.; Malafis, C. J.; McGrew, C.; Nagashima, G.; Nelson, B.; Paul, P.; Ramos, K.; Schmidt, J.; Steffens, J.; Tadepalli, A. S.; Taylor, I. J.; Toki, W.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA, Email: chang.jung@stonybrook.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297826100016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 832  
Permanent link to this record
 

 
Author MiniBooNE Collaboration (Aguilar-Arevalo, A.A. et al); Sorel, M. url  doi
openurl 
  Title Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 718 Issue 4-5 Pages 1303-1308  
  Keywords MiniBooNE; Neutrino oscillation; Lorentz violation  
  Abstract The sidereal time dependence of MiniBooNE nu(e) and (nu) over bar (e) appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov (K-S) test shows both the nu(e) and (nu) over bar (e) appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the nu(e) appearance data prefer a sidereal time-independent solution, and the (nu) over bar (e) appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10(-20) GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for nu(mu) -> nu(e) and (nu) over bar (mu) -> (nu) over bar (e) oscillations. The fit values and limits of combinations of SME coefficients are provided.  
  Address [Dharmapalan, R.; Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA, Email: katori@fnal.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314554300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1390  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope Type Journal Article
  Year 2012 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 714 Issue 2-5 Pages 224-230  
  Keywords Neutrino oscillations; Neutrino telescope; ANTARES  
  Abstract The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Delta m(32)(2) = (3.1 +/- 0.9) . 10(-3) eV(2) is obtained, in good agreement with the world average value.  
  Address [Al Samarai, I.; Aubert, J. -J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J. -P.; Escoffier, S.; Galata, S.; Hallewell, G.; Riviere, C.; Vallee, C.; Vecchi, M.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France, Email: brunner@cppm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307680100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1187  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva