toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author El-Neaj, Y.A. et al; Bernabeu, J. url  doi
openurl 
  Title AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space Type Journal Article
  Year 2020 Publication EPJ Quantum Technology Abbreviated Journal EPJ Quantum Technol.  
  Volume 7 Issue 1 Pages 6 - 27pp  
  Keywords  
  Abstract We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126  
  Address [El-Neaj, Yousef Abou] Harvard Univ, Phys Dept, Cambridge, MA 02138 USA, Email: o.buchmueller@imperial.ac.uk  
  Corporate Author Thesis  
  Publisher Springeropen Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2662-4400 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519468200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4325  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Mamuzic, J.; Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O. url  doi
openurl 
  Title Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 123 Issue 2 Pages 021802 - 7pp  
  Keywords  
  Abstract MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, 1/2, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.  
  Address [Acharya, B.; Alexandre, J.; Baines, S.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: vasiliki.mitsou@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000474894200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4077  
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Do T asymmetries for neutrino oscillations in uniform matter have a CP-even component? Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 103 - 12pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract Observables of neutrino oscillations in matter have, in general, contributions from the effective matter potential. It contaminates the CP violation asymmetry adding a fake effect that has been recently disentangled from the genuine one by their different behavior under T and CPT. Is the genuine T-odd CPT-invariant component of the CP asymmetry coincident with the T asymmetry? Contrary to CP, matter effects in uniform matter cannot induce by themselves a non-vanishing T asymmetry; however, the question of the title remained open. We demonstrate that, in the presence of genuine CP violation, there is a new non-vanishing CP-even, and so CPT-odd, component in the T asymmetry in matter, which is of odd-parity in both the phase delta of the flavor mixing and the matter parameter a. The two disentangled components, genuine A(alpha beta)(T;CP) and fake A(alpha beta)(T;CPT), could be experimentally separated by the measurement of the two T asymmetries in matter (nu(alpha) <-> nu(beta)) and ((nu) over bar <-> (nu) over bar (beta)). For the (nu(mu) <-> nu(e)) transitions, the energy dependence of the new A(mu e)(T;CPT) component is like the matter-induced term A(mu e)(CP;CPT) of the CP asymmetry which is odd under a change of the neutrino mass hierarchy. We have thus completed the physics involved in all observable asymmetries in matter by means of their disentanglement into the three independent components, genuine A(alpha beta)(CP;T) and fake A(alpha beta)(CP;CPT) and A(alpha beta)(T;CPT).  
  Address [Bernabeu, Jose] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Valencia, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462327100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3961  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; King, M.; Mitsou, V.A.; Vento, V.; Vives, O. url  doi
openurl 
  Title Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 067 - 25pp  
  Keywords Exotics; Hadron-Hadron scattering (experiments); Particle and resonance production  
  Abstract The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area similar to 18 m(2), sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb(-1). No magnetic charge exceeding 0.5g(D) (where g(D) is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV <= m <= 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g(D) <= vertical bar g vertical bar <= 6g(D), and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g(D) <= vertical bar g vertical bar <= 4g(D). Under the assumption of Drell-Yan cross sections, mass limits are derived for vertical bar g vertical bar = 2g(D) and vertical bar g vertical bar = 3g(D) for the first time at the LHC, surpassing the results from previous collider experiments.  
  Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: philippe.mermod@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000391754500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2927  
Permanent link to this record
 

 
Author Bernabeu, J. url  doi
openurl 
  Title Discrete Symmetries CP,T,CPT Type Journal Article
  Year 2016 Publication Acta Physica Polonica B Abbreviated Journal Acta Phys. Pol. B  
  Volume 47 Issue 2 Pages 417-424  
  Keywords  
  Abstract The role of symmetry breaking mechanisms to search for new physics is of highest importance. We discuss the status and prospects of the discrete symmetries CP, T, CPT looking for their separate violation in LHC experiments and meson factories.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46003 Valencia, Spain, Email: jose.bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4254 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373493700022 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2628  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva