toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J. url  doi
openurl 
  Title Quantum-corrected rotating black holes and naked singularities in (2+1) dimensions Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 10 Pages 104023 - 39pp  
  Keywords  
  Abstract We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on rotating (2 + 1)-dimensional black holes and naked singularities. In both cases we obtain the quantum-back-reacted metric analytically. In the black hole case, we explore the quantum corrections on different regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the naked singularity case, quantum effects lead to the formation of a horizon that hides the conical defect, thus turning it into a black hole. The fact that these effects occur not only for static but also for spinning geometries makes a strong case for the role of quantum mechanics as a cosmic censor in Nature.  
  Address [Casals, Marc] CBPF, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000509560700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4263  
Permanent link to this record
 

 
Author Euve, L.P.; Robertson, S.; James, N.; Fabbri, A.; Rousseaux, G. url  doi
openurl 
  Title Scattering of Co-Current Surface Waves on an Analogue Black Hole Type Journal Article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 124 Issue 14 Pages 141101 - 6pp  
  Keywords  
  Abstract We report on what is to our knowledge the first scattering experiment of surface waves on an accelerating transcritical flow, which in the analogue gravity context is described by an effective spacetime with a black-hole horizon. This spacetime has been probed by an incident co-current wave, which partially scatters into an outgoing countercurrent wave on each side of the horizon. The measured scattering amplitudes are compatible with the predictions of the hydrodynamical theory, where the kinematical description in terms of the effective metric is exact.  
  Address [Euve, Leo-Paul] Univ Paris Diderot, Univ PSL, Lab Phys & Mecan Milieux Heterogenes, CNRS,Sorbonne Univ,UMR 7636,ESPCI, 10 Rue Vauquelin, F-75321 Paris 05, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000524336600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4364  
Permanent link to this record
 

 
Author Fabbri, A.; Balbinot, R.; Anderson, P.R. url  doi
openurl 
  Title Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 6 Pages 064046 - 6pp  
  Keywords  
  Abstract A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low-frequency limit.  
  Address [Fabbri, Alessandro; Balbinot, Roberto] Ctr Studi & Ric Enrico Fermi, Piazza Viminale 1, I-00184 Rome, Italy, Email: afabbri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372421100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2582  
Permanent link to this record
 

 
Author Mauro, S.; Balbinot, R.; Fabbri, A.; Shapiro, I.L. url  doi
openurl 
  Title Fourth derivative gravity in the auxiliary fields representation and application to the black-hole stability Type Journal Article
  Year 2015 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 130 Issue 7 Pages 135 - 8pp  
  Keywords  
  Abstract We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in detail and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results clearer. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.  
  Address [Mauro, Sebastiao; Shapiro, Ilya L.] Univ Fed Juiz de Fora, Dept Fis, ICE, BR-36036360 Juiz De Fora, MG, Brazil, Email: afabbri@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358147100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2309  
Permanent link to this record
 

 
Author Babichev, E.; Fabbri, A. url  doi
openurl 
  Title A class of charged black hole solutions in massive (bi)gravity Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 016 - 10pp  
  Keywords Classical Theories of Gravity; Black Holes  
  Abstract We present a new class of solutions describing charged black holes in massive (bi)gravity. For a generic choice of the parameters of the massive gravity action, the solution is the Reissner-Nordstrom-de Sitter metric written in the Eddington-Finkelstein coordinates for both metrics. We also study a special case of the parameters, for which the space of solutions contains an extra symmetry.  
  Address [Babichev, Eugeny] Univ Paris 11, CNRS, LPT, UMR 8627, F-91405 Orsay, France, Email: eugeny.babichev@th.u-psud.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339110500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1847  
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title Amplifying the Hawking Signal in BECs Type Journal Article
  Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2014 Issue Pages 713574 - 8pp  
  Keywords  
  Abstract We consider simple models of Bosep-Einstein condensates to study analog pairp-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly timep-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms' interactions shortly before measurements are made.  
  Address [Balbinot, Roberto; Fabbri, Alessandro] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: afabbri@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000335740300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1787  
Permanent link to this record
 

 
Author Babichev, E.; Fabbri, A. url  doi
openurl 
  Title Stability analysis of black holes in massive gravity: A unified treatment Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 8 Pages 081502 - 5pp  
  Keywords  
  Abstract We consider the analytic solutions of massive (bi) gravity which can be written in a simple form using advanced Eddington-Finkelstein coordinates. We analyze the stability of these solutions against radial perturbations. First we recover the previously obtained result on the instability of the bidiagonal bi-Schwarzschild solutions. In the nonbidiagonal case (which contains, in particular, the Schwarzschild solution with Minkowski fiducial metric), we show that generically there are physical spherically symmetric perturbations, but no unstable modes.  
  Address [Babichev, Eugeny; Fabbri, Alessandro] Univ Paris 11, Lab Phys Theor Orsay, F-91405 Orsay, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334335000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1770  
Permanent link to this record
 

 
Author Mayoral, C.; Recati, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Carusotto, I. url  doi
openurl 
  Title Acoustic white holes in flowing atomic Bose-Einstein condensates Type Journal Article
  Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 13 Issue Pages 025007 - 29pp  
  Keywords  
  Abstract We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method, which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.  
  Address [Recati, Alessio; Carusotto, Iacopo] Univ Trent, INO CNR BEC Ctr, I-38123 Povo, Italy, Email: carusott@science.unitn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287855400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 556  
Permanent link to this record
 

 
Author Martone, G.I.; Larre, P.E.; Fabbri, A.; Pavloff, N. url  doi
openurl 
  Title Momentum distribution and coherence of a weakly interacting Bose gas after a quench Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 98 Issue 6 Pages 063617 - 21pp  
  Keywords  
  Abstract We consider a weakly interacting uniform atomic Bose gas with a time-dependent nonlinear coupling constant. By developing a suitable Bogoliubov treatment we investigate the time evolution of several observables, including the momentum distribution, the degree of coherence in the system, and their dependence on dimensionality and temperature. We rigorously prove that the low-momentum Bogoliubov modes remain frozen during the whole evolution, while the high-momentum ones adiabatically follow the change in time of the interaction strength. At intermediate momenta we point out the occurrence of oscillations, which are analogous to Sakharov oscillations. We identify two wide classes of time-dependent behaviors of the coupling for which an exact solution of the problem can be found, allowing for an analytic computation of all the relevant observables. A special emphasis is put on the study of the coherence property of the system in one spatial dimension. We show that the system exhibits a smooth “light-cone effect,” with typically no prethermalization.  
  Address [Martone, Giovanni I.; Pavloff, Nicolas] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS,UMR 8626, F-91405 Orsay, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000452949900009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3841  
Permanent link to this record
 

 
Author Dudley, R.A.; Anderson, P.R.; Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 12 Pages 124011 - 18pp  
  Keywords  
  Abstract Transverse excitations in analogue black holes induce a masslike term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of approximately parallel peaks. For the most part the structure is completely different from that found in the massless case.  
  Address [Dudley, Richard A.; Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: dudlra13@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000452979300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3834  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva