|   | 
Details
   web
Records
Author Alidra, M. et al; Torro Pastor, E.
Title The MATHUSLA test stand Type Journal Article
Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 985 Issue Pages 164661 - 9pp
Keywords Long-lived particles; LHC; MATHUSLA; Backscattered cosmic rays
Abstract The rate of muons from LHC pp collisions reaching the surface above the ATLAS interaction point is measured as a function of the ATLAS luminosity and compared with expected rates from decays of W and Z bosons and b- and c-quark jets. In addition, data collected during periods without beams circulating in the LHC provide a measurement of the background from cosmic ray inelastic backscattering that is compared to simulation predictions. Data were recorded during 2018 in a 2.5 x 2.5 x 6.5 m(3) active volume MATHUSLA test stand detector unit consisting of two scintillator planes, one at the top and one at the bottom, which defined the trigger, and six layers of RPCs between them, grouped into three (x, y)-measuring layers separated by 1.74 m from each other. Triggers selecting both upward-going tracks and downward-going tracks were used.
Address [Alidra, Maf; Ball, Austin; Guida, Roberto] CERN, Geneva, Switzerland, Email: Emma.Torro.Pastor@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000592358200022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4637
Permanent link to this record
 

 
Author Cabanelas, P. et al; Nacher, E.
Title Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 965 Issue Pages 163845 - 6pp
Keywords CsI(Tl) scintillator crystals; Energy resolution; Non-uniformity light output; Optical Coupling; Avalanche Photo-Diodes
Abstract CALIFA is the high efficiency and energy resolution calorimeter for the (RB)-B-3 experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the (RB)-B-3 calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling.
Address [Cabanelas, P.; Gonzalez, D.; Alvarez-Pol, H.; Boillos, J. M.; Cortina, D.; Feijoo, M.; Galiana, E.; Pietras, B.; Rodriguez-Sanchez, J. L.] Univ Santiago Compostela, Inst Galego Fis Altas Enerxias, E-15782 Santiago De Compostela, Spain, Email: pablo.cabanelas@usc.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000524338400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4363
Permanent link to this record
 

 
Author Azevedo, C.D.R.; Baeza, A.; Chauveau, E.; Corbacho, J.A.; Diaz, J.; Domange, J.; Marquet, C.; Martinez-Roig, M.; Piquemal, F.; Veloso, J.F.C.A.; Yahlali, N.
Title Simulation results of a real-time in water tritium monitor Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 982 Issue Pages 164555 - 7pp
Keywords Tritium in water; Real-time monitor; Nuclear power plant; Environmental safety
Abstract In this work we present simulation results for a modular tritium in-water real-time monitor. The system allows for scalability in order to achieve the required sensitivity. The modules are composed by 340 uncladed scintillating fibers immersed in water and 2 photosensors in coincidence for light readout. Light yield and Birks' coefficient uncertainties for low energy beta particles is discussed. A study of the detection efficiency according to the fiber length is presented. Discussion on the system requirements and background mitigation for a device with sensitivity of 100 Bq/L, required to comply with the European directive 2013/51/Euratom, is presented. Due to the low energetic beta emission from tritium a detection efficiency close to 3.3% was calculated for a single 2 mm round fiber.
Address [Azevedo, C. D. R.; Veloso, J. F. C. A.] Univ Aveiro, Dept Phys, I3N, Campus Univ Santiago, P-3810193 Aveiro, Portugal, Email: cdazevedo@ua.pt
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000581805300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4578
Permanent link to this record
 

 
Author Babiano, V.; Balibrea, J.; Caballero, L.; Calvo, D.; Ladarescu, I.; Mira Prats, S.; Domingo-Pardo, C.
Title First i-TED demonstrator: A Compton imager with Dynamic Electronic Collimation Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 953 Issue Pages 163228 - 9pp
Keywords Compton imaging; Position-sensitive detectors; Monolithic crystals; Silicon photomultiplier
Abstract i-TED consists of both a total energy detector and a Compton camera primarily intended for the measurement of neutron capture cross sections by means of the simultaneous combination of neutron time-of-flight (TOF) and gamma-ray imaging techniques. TOF allows one to obtain a neutron-energy differential capture yield, whereas the imaging capability is intended for the discrimination of radiative background sources, that have a spatial origin different from that of the capture sample under investigation. A distinctive feature of i-TED is the embedded Dynamic Electronic Collimation (DEC) concept, which allows for a trade-off between efficiency and image resolution. Here we report on some general design considerations and first performance characterization measurements made with an i-TED demonstrator in order to explore its gamma-ray detection and imaging capabilities.
Address [Babiano, V; Balibrea, J.; Caballero, L.; Calvo, D.; Ladarescu, I; Mira Prats, S.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000506419900045 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4250
Permanent link to this record
 

 
Author Yokoyama, R.; Singh, M.; Grzywacz, R.; Keeler, A.; King, T.T.; Agramunt, J.; Brewer, N.T.; Go, S.; Heideman, J.; Liu, J.; Nishimura, S.; Parkhurst, P.; Phong, V.H.; Rajabali, M.M.; Rasco, B.C.; Rykaczewski, K.P.; Stracener, D.W.; Tain, J.L.; Tolosa-Delgado, A.; Vaigneur, K.; Wolinska-Cichocka, M.
Title Segmented YSO scintillation detectors as a new beta-implant detection tool for decay spectroscopy in fragmentation facilities Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 937 Issue Pages 93-97
Keywords Beta-decay; Implant-beta detector; Radioactive isotopes; Fragmentation
Abstract A newly developed segmented YSO scintillator detector was implemented for the first time at the RI-beam Factory at RIKEN Nishina Center as an implantation-decay counter. The results from the experiment demonstrate that the detector is a viable alternative to conventional silicon-strip detectors with its good timing resolution and high detection efficiency for beta particles. A Position-Sensitive Photo-Multiplier Tube (PSPMT) is coupled with a 48 x 48 segmented YSO crystal. To demonstrate its capabilities, a known short-lived isomer in Ni-76 and the beta decay of Co-74 were measured by implanting those ions into the YSO detector. The half-lives and gamma-rays observed in this work are consistent with the known values. The beta-ray detection efficiency is more than 80 % for the decay of Co-74.
Address [Yokoyama, R.; Singh, M.; Grzywacz, R.; Keeler, A.; King, T. T.; Brewer, N. T.; Heideman, J.; Rasco, B. C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: ryokoyam@utk.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000471139300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4054
Permanent link to this record