KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Carretero, V., Cecchini, V., et al. (2024). Differential Sensitivity of the KM3NeT/ARCA detector to a diffuse neutrino flux and to point-like source emission: Exploring the case of the Starburst Galaxies. Astropart Phys., 162, 102990–9pp.
Abstract: KM3NeT/ARCA is a Cherenkov neutrino telescope under construction in the Mediterranean sea, optimised for the detection of astrophysical neutrinos with energies above similar to 1 TeV. In this work, using Monte Carlo simulations including all-flavour neutrinos, the integrated and differential sensitivities for KM3NeT/ARCA are presented considering the case of a diffuse neutrino flux as well as extended and point-like neutrino sources. This analysis is applied to Starburst Galaxies demonstrating that the detector has the capability of tracing TeV neutrinos from these sources. Remarkably, after eight years, a hard power-law spectrum from the nearby Small Magellanic Cloud can be constrained. The sensitivity and discovery potential for NGC 1068 is also evaluated showing that KM3NeT/ARCA will discriminate between different astrophysical components of the measured neutrino flux after 3 years of data taking.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Carretero, V., Cecchini, V., et al. (2024). Astronomy potential of KM3NeT/ARCA. Eur. Phys. J. C, 84(9), 885–17pp.
Abstract: The KM3NeT/ARCA neutrino detector is currently under construction at 3500 m depth offshore Capo Passero, Sicily, in the Mediterranean Sea. The main science objectives are the detection of high-energy cosmic neutrinos and the discovery of their sources. Simulations were conducted for the full KM3NeT/ARCA detector, instrumenting a volume of 1 km(3), to estimate the sensitivity and discovery potential to point-like neutrino sources. This paper covers the reconstruction of track- and shower-like signatures, as well as the criteria employed for neutrino event selection. With an angular resolution below 0.1 degrees for tracks and under 2 degrees for showers, the sensitivity to point-like neutrino sources surpasses existing observed limits across the entire sky.
|
Alves Batista, R. et al, Mitsou, V. A., Olmo, G. J., & Zornoza, J. D. (2025). White paper and roadmap for quantum gravity phenomenology in the multi-messenger era. Class. Quantum Gravity, 42(3), 032001–47pp.
Abstract: The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test, where a clear signal of quantum properties of gravity is still missing. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 'Quantum gravity phenomenology in the multi-messenger approach (QG-MM)', in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Carretero, V., Cecchini, V., et al. (2024). The Power Board of the KM3NeT Digital Optical Module: Design, Upgrade, and Production. Electronics, 13(11), 2044–17pp.
Abstract: The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea, consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three-inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module also includes calibration instruments and electronics for power, readout, and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and ten prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, which total 828 as of October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. The validation of a pre-production series has been completed, and a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespan.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Carretero, V., Garcia Soto, A., et al. (2024). Searches for neutrino counterparts of gravitational waves from the LIGO/Virgo third observing run with KM3NeT. J. Cosmol. Astropart. Phys., 04(4), 026–28pp.
Abstract: The KM3NeT neutrino telescope is currently being deployed at two different sites in the Mediterranean Sea. First searches for astrophysical neutrinos have been performed using data taken with the partial detector configuration already in operation. The paper presents the results of two independent searches for neutrinos from compact binary mergers detected during the third observing run of the LIGO and Virgo gravitational wave interferometers. The first search looks for a global increase in the detector counting rates that could be associated with inverse beta decay events generated by MeV-scale electron anti -neutrinos. The second one focuses on upgoing track -like events mainly induced by muon (anti -)neutrinos in the GeV-TeV energy range. Both searches yield no significant excess for the sources in the gravitational wave catalogs. For each source, upper limits on the neutrino flux and on the total energy emitted in neutrinos in the respective energy ranges have been set. Stacking analyses of binary black hole mergers and neutron star -black hole mergers have also been performed to constrain the characteristic neutrino emission from these categories.
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2024). Searches for Neutrinos in the Direction of Radio-bright Blazars with the ANTARES Telescope. Astrophys. J., 964(1), 3–13pp.
Abstract: Active galaxies, especially blazars, are among the most promising extragalactic candidates for high-energy neutrino sources. To date, ANTARES searches included these objects and used GeV-TeV gamma-ray flux to select blazars. Here, a statistically complete blazar sample selected by their bright radio emission is used as the target for searches of origins of neutrinos collected by the ANTARES neutrino telescope over 13 yr of operation. The hypothesis of a neutrino-blazar directional correlation is tested by pair counting and a complementary likelihood-based approach. The resulting posttrial p-value is 3.0% (2.2 sigma in the two-sided convention). Additionally, a time-dependent analysis is performed to search for temporal clustering of neutrino candidates as a means of detecting neutrino flares in blazars. None of the investigated sources alone reaches a significant flare detection level. However, the presence of 18 sources with a pretrial significance above 3 sigma indicates a p = 1.4% (2.5 sigma in the two-sided convention) detection of a time-variable neutrino flux. An a posteriori investigation reveals an intriguing temporal coincidence of neutrino, radio, and gamma-ray flares of the J0242+1101 blazar at a p = 0.5% (2.9 sigma in the two-sided convention) level. Altogether, the results presented here suggest a possible connection of neutrino candidates detected by the ANTARES telescope with radio-bright blazars.
|
Unbehaun, T. et al(C. T. A. C. and K. M. 3N. T. C.), Alves Garre, S., Calvo, D., Carretero, V., Cecchini, V., Garcia Soto, A., et al. (2024). Prospects for combined analyses of hadronic emission from γ-ray sources in the Milky Way with CTA and KM3NeT. Eur. Phys. J. C, 84(2), 112–19pp.
Abstract: The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major upcoming facilities in the fields of gamma-ray and neutrino astronomy, respectively. Possible simultaneous production of gamma rays and neutrinos in astrophysical accelerators of cosmic-ray nuclei motivates a combination of their data. We assess the potential of a combined analysis of CTA and KM3NeT data to determine the contribution of hadronic emission processes in known Galactic gamma-ray emitters, comparing this result to the cases of two separate analyses. In doing so, we demonstrate the capability of GAMMAPY, an open-source software package for the analysis of gamma-ray data, to also process data from neutrino telescopes. For a selection of prototypical gamma-ray sources within our Galaxy, we obtain models for primary proton and electron spectra in the hadronic and leptonic emission scenario, respectively, by fitting published gamma-ray spectra. Using these models and instrument response functions for both detectors, we employ the GAMMAPY package to generate pseudo data sets, where we assume 200 h of CTA observations and 10 years of KM3NeT detector operation. We then apply a three-dimensional binned likelihood analysis to these data sets, separately for each instrument and jointly for both. We find that the largest benefit of the combined analysis lies in the possibility of a consistent modelling of the gamma-ray and neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for the most favourable source, an average expected 68% credible interval that constrains the contribution of hadronic processes to the observed gamma-ray emission to below 15%.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Garcia Soto, A., Gozzini, S. R., et al. (2024). Embedded software of the KM3NeT central logic board. Comput. Phys. Commun., 296, 109036–15pp.
Abstract: The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes. Program summary Program title: Embedded software for the KM3NeT CLB CPC Library link to program files: https://doi.org/10.17632/s847hpsns4.1 Licensing provisions: GNU General Public License 3 Programming language: C Nature of problem: The challenge for the embedded software in the KM3NeT neutrino telescope lies in orchestrating the Digital Optical Modules (DOMs) to achieve the synchronized data acquisition of the incoming optical signals. The DOMs are the crucial component responsible for capturing neutrino interactions deep underwater. The embedded software must configure and precisely time the operation of each DOM. Any deviation or timing mismatch could compromise data integrity, undermining the scientific value of the experiment. Therefore, the embedded software plays a critical role in coordinating, synchronizing, and operating these modules, ensuring they work in unison to capture and process neutrino signals accurately, ultimately advancing our understanding of fundamental particles in the Universe. Solution method: The embedded software on the DOMs provides a solution based on a C-based bare-metal application, operating without a real-time embedded OS. It is loaded into the RAM during FPGA configuration, consuming less than 256 kB of RAM. The software architecture comprises two layers: system software and application. The former offers OS-like features, including a multitasking scheduler, firmware updates, peripheral drivers, a UDP-based network stack, and error handling utilities. The application layer contains a state machine ensuring consistent program states. It is navigated via slow control events, including external inputs and autonomous responses. Subsystems within the application code control specific acquisition electronics components via the associated driver abstractions. Additional comments including restrictions and unusual features: Due to the operation conditions of the neutrino telescope, where access is restricted, the embedded software implements a fail-safe procedure to reconfigure the firmware where the embedded software runs.
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2023). Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector. J. Cosmol. Astropart. Phys., 04(4), 004–19pp.
Abstract: Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by v μcharged -current interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within +/- 500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,v emitted as neutrinos of all flavours and on the ratio fv = Etot,v/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,v < 4.0 x 1053 erg and fv < 0.15 (respectively, Etot,v < 3.2 x 1053 erg and fv < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been tested.
|
KM3NeT Collaboration(Aitllo, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Garcia Soto, A., Gozzini, S. R., et al. (2023). Probing invisible neutrino decay with KM3NeT/ORCA. J. High Energy Phys., 04(4), 090–30pp.
Abstract: In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state v3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/alpha 3 = T3/m3 < 180 ps/eV at 90% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for theta(23), Delta m(31)(2) and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.
|